# NBUT 1640多边形的公共部分+多边形面积交

Description

Input

Output

Sample Input

4 0 0 2 0 2 2 0 2
4 2 0 4 0 4 2 2 2
4 0 0 2 0 2 2 0 2
4 1 0 3 0 3 2 1 2

Sample Output

Case 1: No
Case 2: Yes

Hint

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<queue>
#include<map>
#include<stack>
#include<set>

using namespace std;

const int maxn=555;
const int maxisn=10;
const double eps=1e-8;
const double pi=acos(-1.0);

int dcmp(double x){
if(x>eps) return 1;
return x<-eps ? -1 : 0;
}
inline double Sqr(double x){
return x*x;
}
struct Point{
double x,y;
Point(){x=y=0;}
Point(double x,double y):x(x),y(y){};
friend Point operator + (const Point &a,const Point &b) {
return Point(a.x+b.x,a.y+b.y);
}
friend Point operator - (const Point &a,const Point &b) {
return Point(a.x-b.x,a.y-b.y);
}
friend bool operator == (const Point &a,const Point &b) {
return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;
}
friend Point operator * (const Point &a,const double &b) {
return Point(a.x*b,a.y*b);
}
friend Point operator * (const double &a,const Point &b) {
return Point(a*b.x,a*b.y);
}
friend Point operator / (const Point &a,const double &b) {
return Point(a.x/b,a.y/b);
}
friend bool operator < (const Point &a, const Point &b) {
return a.x < b.x || (a.x == b.x && a.y < b.y);
}
inline double dot(const Point &b)const{
return x*b.x+y*b.y;
}
inline double cross(const Point &b,const Point &c)const{
return (b.x-x)*(c.y-y)-(c.x-x)*(b.y-y);
}

};

Point LineCross(const Point &a,const Point &b,const Point &c,const Point &d){
double u=a.cross(b,c),v=b.cross(a,d);
return Point((c.x*v+d.x*u)/(u+v),(c.y*v+d.y*u)/(u+v));
}
double PolygonArea(Point p[],int n){
if(n<3) return 0.0;
double s=p[0].y*(p[n-1].x-p[1].x);
p[n]=p[0];
for(int i=1;i<n;i++){
s+=p[i].y*(p[i-1].x-p[i+1].x);
}
return fabs(s*0.5);
}
double CPIA(Point a[],Point b[],int na,int nb){
Point p[maxisn],temp[maxisn];
int i,j,tn,sflag,eflag;
a[na]=a[0],b[nb]=b[0];
memcpy(p,b,sizeof(Point)*(nb+1));
for(i=0;i<na&&nb>2;++i){
sflag=dcmp(a[i].cross(a[i+1],p[0]));
for(j=tn=0;j<nb;++j,sflag=eflag){
if(sflag>=0) temp[tn++]=p[j];
eflag=dcmp(a[i].cross(a[i+1],p[j+1]));
if((sflag^eflag)==-2)
temp[tn++]=LineCross(a[i],a[i+1],p[j],p[j+1]);
}
memcpy(p,temp,sizeof(Point)*tn);
nb=tn,p[nb]=p[0];
}
if(nb<3) return 0.0;
return PolygonArea(p,nb);
}
double SPIA(Point a[],Point b[],int na,int nb){
int i,j;
Point t1[4],t2[4];
double res=0.0,if_clock_t1,if_clock_t2;
a[na]=t1[0]=a[0];
b[nb]=t2[0]=b[0];
for(i=2;i<na;i++){
t1[1]=a[i-1],t1[2]=a[i];
if_clock_t1=dcmp(t1[0].cross(t1[1],t1[2]));
if(if_clock_t1<0) swap(t1[1],t1[2]);
for(j=2;j<nb;j++){
t2[1]=b[j-1],t2[2]=b[j];
if_clock_t2=dcmp(t2[0].cross(t2[1],t2[2]));
if(if_clock_t2<0) swap(t2[1],t2[2]);
res+=CPIA(t1,t2,3,3)*if_clock_t1*if_clock_t2;
}
}
return res;
//return PolygonArea(a,na)+PolygonArea(b,nb)-res;
}

Point a[222],b[222];
Point aa[222],bb[222];

int main(){
int n1,n2;
int cas=0;
while(scanf("%d",&n1)!=EOF){
for(int i=0;i<n1;i++) scanf("%lf %lf",&a[i].x,&a[i].y);
scanf("%d",&n2);
for(int i=0;i<n2;i++) scanf("%lf %lf",&b[i].x,&b[i].y);

if(fabs(SPIA(a,b,n1,n2))>eps) printf("Case %d: Yes\n",++cas);
else printf("Case %d: No\n",++cas);
}
return 0;
}

• 本文已收录于以下专栏：

## C++基础篇--作用域和自定义命名空间

• ipmux
• 2015年03月23日 17:19
• 3007

## NOIP 2016[图论复习]

• getsum
• 2016年11月15日 00:14
• 302

## [HDU 5130] Signal Interference （圆与简单多边形面积交）

HDU - 5130 求圆与简单多边形的面积交 从圆心将多边形剖分成若干个三角形 然后求每个三角形与圆的面积交 为了方便其间，先将多边形每条边与圆的交点加入多边形上 这样每条边与圆的关系只有...

## light1358 - Fukushima Nuclear Blast【圆与多边形面积的交+二分】

1358 - Fukushima Nuclear Blast PDF (English) Statistics Forum Time Lim...

举报原因： 您举报文章：NBUT 1640多边形的公共部分+多边形面积交 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)