URAL 1586 Threeprime Numbers (数位DP)

博客原文地址:http://blog.csdn.net/xuechelingxiao/article/details/38658153


Threeprime Numbers


题目大意:首先定义一个Threeprime Numbers, Threeprime Numbers的含义就是:对于一个数,这个数中任意连续的三个数字组成的三位数都是素数,那么这个数就是Threeprime Numbers,求1到n中所有Threeprime Numbers的数量。


解题思路:数位DP。 dp[i][j][k], i表示当前枚举的数是个几位数,j表示当前数的最高位,k表示次高位。对于当前的i位数,在他前面加上一个数字,如果使得加上的数字与最高位跟次高位组成的三位数是个素数,那么即可推到下一个状态。也就是说,当前的dp[i][加上的数字][j]是由dp[i-1][j][k]推过来的。枚举加上的数字就可以,当然加上的数字不能为0。


#include <stdio.h>
const int MOD = 1e9+9;
#define maxn 1000
int prime[maxn/3];
bool flag[maxn];
void get_prime()
{
    int k = 0;
    for(int i = 2; i < maxn; i++){
        if(!flag[i])
            prime[k++] = i;
        for(int j = 0; j < k && i*prime[j] < maxn; j++){
            flag[i*prime[j]] = true;
            if(i%prime[j] == 0) break;
        }
    }
}

int n;
int dp[10005][11][11];

int main()
{
    get_prime();
    int cnt = 0;
    for(int i = 100; i < 1000; ++i){
        if(flag[i] == 0){
            cnt++;
        }
    }
    //printf("%d\n", cnt);
    scanf("%d", &n);
    for(int i = 100; i < 1000; ++i){
        if(flag[i] == 0){
            dp[3][i/100][i%100/10]++;
        }
    }

    for(int i = 4; i <= n; ++i){
        for(int j = 1; j <= 9; ++j){
            for(int k = 0; k < 10; ++k){
                for(int l = 0; l < 10; ++l){
                    if(flag[j*100+k*10+l] == 0){
                        dp[i][j][k] += dp[i-1][k][l];
                        dp[i][j][k] %= MOD;
                    }
                }
            }
        }
    }

    int sum = 0;
    for(int i = 0; i < 10; ++i){
        for(int j = 0; j < 10; ++j){
            sum += dp[n][i][j];
            sum %= MOD;
            //printf("%d\n", dp[n][i][j]);
        }
    }
    printf("%d\n", sum);

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值