博客原文地址:http://blog.csdn.net/xuechelingxiao/article/details/38658153
题目大意:首先定义一个Threeprime Numbers, Threeprime Numbers的含义就是:对于一个数,这个数中任意连续的三个数字组成的三位数都是素数,那么这个数就是Threeprime Numbers,求1到n中所有Threeprime Numbers的数量。
解题思路:数位DP。 dp[i][j][k], i表示当前枚举的数是个几位数,j表示当前数的最高位,k表示次高位。对于当前的i位数,在他前面加上一个数字,如果使得加上的数字与最高位跟次高位组成的三位数是个素数,那么即可推到下一个状态。也就是说,当前的dp[i][加上的数字][j]是由dp[i-1][j][k]推过来的。枚举加上的数字就可以,当然加上的数字不能为0。
#include <stdio.h>
const int MOD = 1e9+9;
#define maxn 1000
int prime[maxn/3];
bool flag[maxn];
void get_prime()
{
int k = 0;
for(int i = 2; i < maxn; i++){
if(!flag[i])
prime[k++] = i;
for(int j = 0; j < k && i*prime[j] < maxn; j++){
flag[i*prime[j]] = true;
if(i%prime[j] == 0) break;
}
}
}
int n;
int dp[10005][11][11];
int main()
{
get_prime();
int cnt = 0;
for(int i = 100; i < 1000; ++i){
if(flag[i] == 0){
cnt++;
}
}
//printf("%d\n", cnt);
scanf("%d", &n);
for(int i = 100; i < 1000; ++i){
if(flag[i] == 0){
dp[3][i/100][i%100/10]++;
}
}
for(int i = 4; i <= n; ++i){
for(int j = 1; j <= 9; ++j){
for(int k = 0; k < 10; ++k){
for(int l = 0; l < 10; ++l){
if(flag[j*100+k*10+l] == 0){
dp[i][j][k] += dp[i-1][k][l];
dp[i][j][k] %= MOD;
}
}
}
}
}
int sum = 0;
for(int i = 0; i < 10; ++i){
for(int j = 0; j < 10; ++j){
sum += dp[n][i][j];
sum %= MOD;
//printf("%d\n", dp[n][i][j]);
}
}
printf("%d\n", sum);
return 0;
}