关闭

IBM面试三大题

548人阅读 评论(0) 收藏 举报
 
第一道题:在房里有三盏灯,房外有三个开关,在房外看不见房内的情况,你只能进门一次,你用什么方法来区分哪个开关控制那一盏灯?
  第二道题:有两根不均匀分布的香,每根香烧完的时间是一个小时,你能用什么方法来确定一段15分钟的时间?
  第三道题:一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。请问三个女儿的年龄分别是多少?为什么?
第一道题
 
设三个开关分别为ABC,开关的状态为up,down。先把A设为up,BC设为down.,等待十分钟。十分钟后把AB设为down状态,C为up状态,进入房间。若有一个灯泡发热,则发热的灯泡为A控制的灯泡,且亮的那个灯泡为C控制,剩下的那个为B控制。若有两个灯泡发热,则down状态为灯泡亮。此时A为不热的那个灯泡,B为亮的灯炮的开关,C控制剩下的那个。
别人的答案,比我的简明
第一题:先打开一个开关,等5分钟,(不要关掉第一个开关)再开一个开关,等5分钟,这次关掉开关,然后进屋,用手去摸灯,不亮的并且热的就是第二个开关控制的了,亮着的是第一个开关控制的。
分析:

1
、之所以说三个女儿的年龄是确定的,是因为题干给出:有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。这个信息告诉我们,此下属原来或许有2个或2个以上的答案,但是通过经理的提示,他最终确定了其中一个答案,因此说明这道题是有唯一解的。

2
、既然在经理没有给出提示之前,此下属有2个或2个以上的答案,这说明什么问题?这说明这些答案之间有相似性。因此这个下属一时无法确定是哪一个,如果答案之间不具备相似性,那这个聪明的下属应该不需要提示就能给出正确答案了。

3
、相似性是什么?raing之所以说答案可能238,说明他注意到了一个相似性:三个女儿年龄相加等于13,因此他认为从生理上推论可能是238。那么我想问一下:139 不行么? 1210 不行么?所以,还有一个条件呢:三个女儿年龄相乘等于经理的年龄。尽管我们不知道经理的年龄,但是那个下属知道呀,因此我们应该把经理的年龄当成一个常数,而不是一个变量,这一点非常重要。

4
、所以,我们得出的相似性有两点。如果用常数 C 表示经理的年龄,用变量 XYZ 分别表示三个女儿的年龄,可以得出一个三元三次方程组:
X+Y+Z = 13
X×Y×Z = C
很显然,仅仅通过这两个方程是无法得到解的,因此需要我们做数学分析和推导。在分析和推导过程中,还是需要注意那一点:C 是常数。也就是说,那个下属一开始的2个或2个以上的答案都满足上述方程组,相加等于13,相乘等于同一个值 C,这才会使得他无法确定是哪个答案的。

5
、分析与推导如下
前提:尽管我们把 C 当成常数,但还是需要进行求值的,不然无法得出正确答案。
<1> X
YZ 不能全是质数(素数),也就是说 C 不能是三个质数的乘积。大家知道,质数是不可分解的,如果由三个质数因子相乘得到的 C,就无法分解为其他因子。比如 157 三个质数,虽然满足相加等于13,但都是质数,因此它们的乘积 35 无法分解为其他三个因子。所以如果 C 35 的话(即如果经理年龄是 35 岁),那他的女儿只有一种可能性,就是 157 岁,那么那个下属就可以直接说出他女儿的年龄了,不需要提示。因此 XYZ 中至少有一个合数。
<2>
最大年龄的女儿不可能超过 11 岁,我想这个我不用解释了吧。
<3>
各种组合及相对应的经理年龄如下(135711为质数)
11
11:全质数,11
10
21:保留,20
9
31:保留,27
9
22:保留,36  ------注意
8
41:保留,32
8
32:保留,48
7
51:全质数,35
7
42:保留,56
7
33:全质数,63
6
61:保留,36  ------注意
6
52:保留,60
6
43:保留,72
5
53:全质数,75
5
44:保留,80
<4>
正如各位大虾所说,从常识上看就知道很多经理的年龄是不可能的,但是我们从数学的角度来看,只有我标上注意的两项值是正确的,即经理36岁。所以那个下属无法肯定是哪一组答案。
<5>
这时经理的提示就派上用场了,说只有一个女儿的头发是黑色的,那显然不是 661 组合了吧,肯定就是 922 了。

6
、总结
这个问题的关键在于得出经理的年龄,而在分析过程中需要注意质数乘积问题。其实这个题目也是挺简单的,大家细心凑一下也能凑出来,然而我觉得从严谨的思维角度出发,还是应该用数学推导,这样便于我们处理更复杂的逻辑问题。试想哥德巴赫猜想也不过就是质数求和问题,但连陈景润都只证明到“12”,其中繁复,又有谁人知?或许,我们把这个小问题当成小哥德巴赫猜想,会更能激起大家的兴趣吧!
 
第三道题:有两根外形、重量、颜色完全一样的长条物体,有一个是铁条,一个是永磁条。不能借用任何工具,判断出来那个是永磁条那个是铁条?
第三道题:一个去接触另一个的中间部分,没有磁性就不是磁条,有磁性就不是磁条。
 
 
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:5867次
    • 积分:177
    • 等级:
    • 排名:千里之外
    • 原创:10篇
    • 转载:0篇
    • 译文:0篇
    • 评论:1条
    文章存档
    最新评论