自然语言处理之话题建模:BERTopic模型详解
自然语言处理之话题建模:BERTopic模型详解
一、引言
1.1 话题建模简介
话题建模是一种统计建模方法,用于发现文档集合或语料库中抽象的话题。它是一种无监督学习技术,能够自动识别文本中的主题或话题,而无需事先定义。话题建模在信息检索、文本挖掘、自然语言处理等领域有着广泛的应用,例如,它可以帮助我们理解大量文档的主要内容,进行文档分类,或者提取关键词。
1.2 BERTopic模型概述
BERTopic是一种基于BERT的先进话题建模技术,它结合了BERT的语义理解能力和非参数聚类算法HDBSCAN的灵活性,能够生成高质量、语义丰富的话题。与传统的LDA(Latent Dirichlet Allocation)话题模型相比,BERTopic能够更好地捕捉文本的复杂语义结构,因为它利用了预训练的BERT模型来嵌入文本,从