自然语言处理之话题建模:BERTopic模型详解

自然语言处理之话题建模:BERTopic模型详解

在这里插入图片描述

自然语言处理之话题建模:BERTopic模型详解

一、引言

1.1 话题建模简介

话题建模是一种统计建模方法,用于发现文档集合或语料库中抽象的话题。它是一种无监督学习技术,能够自动识别文本中的主题或话题,而无需事先定义。话题建模在信息检索、文本挖掘、自然语言处理等领域有着广泛的应用,例如,它可以帮助我们理解大量文档的主要内容,进行文档分类,或者提取关键词。

1.2 BERTopic模型概述

BERTopic是一种基于BERT的先进话题建模技术,它结合了BERT的语义理解能力和非参数聚类算法HDBSCAN的灵活性,能够生成高质量、语义丰富的话题。与传统的LDA(Latent Dirichlet Allocation)话题模型相比,BERTopic能够更好地捕捉文本的复杂语义结构,因为它利用了预训练的BERT模型来嵌入文本,从

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值