hdu 2544最短路(Dijkstra)

最短路径算法实现
本文介绍了一种基于图论的最短路径问题解决方案,通过具体的示例和代码演示了如何计算从起点到终点的最短时间。适用于竞赛及实际场景中路径规划问题。

                                                  最短路

                   Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
                                       Total Submission(s): 45792    Accepted Submission(s): 20193


Problem Description

在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?

Input

输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。

Output

对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间

Sample Input

2 1 1 2 3 3 3 1 2 5 2 3 5 3 1 2 0 0

Sample Output

3 2

这道题Floyd也可以

AC代码:

#include<cstdio>
using namespace std;
#define INF 0xFFFFFFF
int main()
{
    int N,M,A,B,C;
    int i,j,k;
    int s[101][101],dis[101],book[101];
    int min;
    while(scanf("%d %d",&N,&M),N||M){
        for(i=1;i<=N;i++)
        {
            for(j=1;j<=N;j++)
            if(i==j)s[i][j]=0;
            else s[i][j]=INF;
        }
        for(i=0;i<M;i++){
            scanf("%d %d %d",&A,&B,&C);
            if(C<s[A][B])s[A][B]=s[B][A]=C;
        }
        for(i=1;i<=N;i++)
        {
            dis[i]=s[1][i];
            book[i]=0;
        }
        book[1]=1;
        for(i=1;i<=N;i++)
        {
            min=INF;
            for(j=1;j<=N;j++)
            if(!book[j] && dis[j]<min){
                k=j;
                min=dis[j];
            }
            book[k]=1;
            for(j=1;j<=N;j++)
            if(!book[j] && dis[k]+s[k][j]<dis[j])
            dis[j]=dis[k]+s[k][j];
        }
        printf("%d\n",dis[N]);
    }
    return 0;
} 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值