深度优先搜索与广度优先搜索
深度优先搜索的思想是尽可能深的搜索,算法艺术与信息学竞赛一书中提到:随机搜索就像是在慌乱之中找东西,因为你并不知道东西在哪,广度优先搜索则像是你的眼镜掉在地上之
深度优先搜索 (DFS)
采用的搜索方法的特点是尽可能先对纵深方向进行搜索。
基本思路编辑
深度优先遍历图的方法是,从图中某顶点v出发:
(1)访问顶点v;
(2)依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;
(3)若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。
例如对于以下一个树:
1
2 3
4 5 6
深度优先的策略是1->2->4->退后一步->5->退后一步->退后一步->3->6->结束
而广度优先则是第一次:1->2->3第2次:4->5->6
从深度优先的策略上看就知道深搜一般是用递归来实现;深度优先搜索的框架很简单:
void DFS ( int n )
{
if ( 满足结束条件,即搜索到终点 )
return ;
else
DFS ( n + 1 );
}
深搜的框架是如此简单,但是它可能有很多变种,一般用来搜索图,那么传的参数就不可能只有一个那么简单;
广度优先搜索(BFS)
宽度优先搜索算法(又称广度优先搜索)是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽度优先搜索类似的思想。其别名又叫BFS,属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。换句话说,它并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为止。
《算法导论》对两种搜索都采用了很聪明的做法,用白色WHITE来标志未发现的节点,用灰色GRAY来标志第一次被发现的节点,用黑色BLACK来标志第二次被发现的节点。
对比:
深度优先搜索用栈(stack)来实现,整个过程可以想象成一个倒立的树形:
1、把根节点压入栈中。
2、每次从栈中弹出一个元素,搜索所有在它下一级的元素,把这些元素压入栈中。并把这个元素记为它下一级元素的前驱。
3、找到所要找的元素时结束程序。
4、如果遍历整个树还没有找到,结束程序。
广度优先搜索使用队列(queue)来实现,整个过程也可以看做一个倒立的树形:
1、把根节点放到队列的末尾。
2、每次从队列的头部取出一个元素,查看这个元素所有的下一级元素,把它们放到队列的末尾。并把这个元素记为它下一级元素的前驱。
3、找到所要找的元素时结束程序。
4、如果遍历整个树还没有找到,结束程序。