【NOI2002】银河英雄传说

Overview

M=30000 个点, N 个操作(N500000)。
每次操作如下:
(1) M i j :将i所在的排列合并到 j 所在的排列;
(2)C i j:若 i j不在同一排列,输出 1 ,否则输出 i j之间的数的个数。

Analysis

【STEP1】 要用在线算法

这道题的多个操作,感觉上就是在线维护了。

【STEP2】 暴力的想法

首先考虑暴力维护,合并操作用一个 next 数组就可以实现,但是判断在不在一个排列,排列中有多少个数,一次要 O(n) ,很明显不行。

【STEP3】 用并查集优化暴力算法

再考虑用数据结构来优化。
有合并操作,还要判断在不在一个集合中,想到了并查集。
在不在一个排列中很好解决,现在只用解决排列中两数间隔多少个数就可以了。

【STEP4】 试着求解来扩充并查集

现在要扩充并查集。
并查集求区间的方法,通常是维护前缀和,用区间减法。

于是我们设两个数组:
f[i] i 的父亲;
dis[i] i 到父亲的距离。

试着使得各个操作得以满足维护的要求。
FindFather操作最容易处理,先不用管,先搞定合并操作。

Merge(x,y) :将 x 所在的排列接在y
首先求出 fx,fy ,然后将 fx 接在 fy 后, f[fx]=fy
但是 dis[fx] 怎么办?
dis[fx]=size[fy] ,这就是说,我们要维护当前每个集合的元素个数即可。
再设一个数组 size[i] ,当 i 不是集合代表元时没有意义,当i是集合代表元时表示这个集合的大小。

【STEP5】 整理思路

于是我们现在一共定义 3 个数组:f[N] dis[N] size[N]
对各个操作加以维护即可。

FindFather(i) :路径压缩点 i
1 若i=f[i]则不用处理,返回代表元 i
2 记pre=f[i],anc=FindFather(pre)
3 则 f[i]=anc,dis[i]+=dis[pre]

Merge(x,y) :将 x 所在的排列接在y的排列后
1 fx=FindFather(x),fy=FindFather(y)
2 f[fx]=fy
3 dis[fx]=size[fy]
4 size[fy]+=size[fx]

Query(x,y) :求 x y的距离
1 fx=FindFather(x),fy=FindFather(y)
2 若 fxfy ,那么不在同一列,返回 1
3 求 |dis[x]dis[y]|1 即可。

Attention

注意一个坑点,就是有 30000 个固定的点,而不是有 n 个。
n是操作数量!!!!

Sumarize

PS:话说NOI连续两年出并查集了……
然而是很早以前……
突然想起NOI2015用并查集坑了T1的9个点,2333333

这道题首先给了我一个启发,就是我们在求解问题的时候,可以先想一下暴力算法,再从数据结构、算法优化等各种角度加以优化
这样不仅是一种好的方法,而且也有一个程序来对拍。

然后就是这类并查集问题:并查集可以将序列用链划分,同一条链上可以用区间减法求区间和。

最后就是在尝试求解的过程中,很可能会遭到失败。这时候不要全盘否定,要学会调整,增加几个变量。
例如本题发现 merge 操作时 f[x] 无法求,我们考虑再加一个数组 next

Code

#include <cstdio>
#include <cctype>
#include <cmath>

const int M=30000;

int n;
int f[M+10],dis[M+10];
int size[M+10];

inline int read(void)
{
    int x=0; char c=getchar();
    for (;!isdigit(c);c=getchar());
    for (;isdigit(c);c=getchar()) x=x*10+c-'0';
    return x;
}

int findf(int i)
{
    if (f[i]==i) return i;
    int pre=f[i],anc=findf(f[i]);
    f[i]=anc,dis[i]+=dis[pre];
    return anc;
}

int main(void)
{
    n=read();
    for (int i=1;i<=M;i++) f[i]=i,size[i]=1;

    char c; int x,y; int fx,fy;
    for (int i=1;i<=n;i++)
    {
        scanf("\n"); c=getchar(); x=read(),y=read();
        fx=findf(x),fy=findf(y);
        if (c=='M')
        {
            f[fx]=fy;
            dis[fx]=size[fy];
            size[fy]+=size[fx];
        }
        else printf("%d\n",fx!=fy?-1:dis[x]<dis[y]?dis[y]-dis[x]-1:dis[x]-dis[y]-1);
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值