【BZOJ 2301】Problem B 莫比乌斯反演

题意

n个询问。
bi=adj=c[gcd(i,j)=k]
1n50000ab500001cd500001k50000

分析

用莫比乌斯反演求解这道题。
网上常见的分析有两种,一种是直接推一遍莫比乌斯反演,另一种是直接使用莫比乌斯反演。。

反演:
F(n)=n|df(d)f(n)=n|dμ(dn)F(d)

首先,根据容斥原理,把原问题转成4个子问题。
现在的问题相当于求:
ni=1mj=1[gcd(i,j)=k]

发现直接求解不容易,考虑使用反演。
设:f(k)=ni=1mj=1[gcd(i,j)=k],即为所求的答案。
F(k)=ni=1mj=1[k|gcd(i,j)]=nkmk

则有F(k)=k|df(d)
f(k)=k|dμ(dk)F(d)=k|dμ(dk)ndmd

下一步在popoqqq的PPT里面没有讲清楚啊,然后就直接给代码了。不过这也是很容易想到的。
我们考虑枚举dk的值i,则d=ki
f(n)=ni=1μ(i)nkimki
到这里两种方法求出的结果已经相同了。

接下来的方法就不赘述了。
这里只是证明一下nd只有O(n)个取值。
证明:①当dn时,因为只有n个数,所以只有n个取值。
②当d>n时,nd<n,又因为是整数,所以最多只有n个取值。
综上,有O(n)个取值。

代码

#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;

const int N=50001;

int vis[N],mu[N],pri[N],tot,suf[N];
int cas;
int a,b,c,d,k;
int s1,s2,s3,s4,ans;

inline int read(void)
{
    int x=0; char c=getchar();
    for (;!isdigit(c);c=getchar());
    for (;isdigit(c);c=getchar()) x=x*10+c-'0';
    return x;
}

int query(int n,int m)
{
    int a=n/k,b=m/k; int l,r; int calc=0;
    if (a>b) swap(a,b);
    for (l=1;l<=a;l=r+1)
    {
        r=min(a/(a/l),b/(b/l));
        calc=calc+(a/l)*(b/l)*(suf[r]-suf[l-1]);
    }
    return calc;
}

int main(void)
{
//  freopen("a.in","r",stdin);
//  freopen("a.out","w",stdout);

    vis[1]=mu[1]=1;
    for (int i=2;i<N;i++)
    {
        if (!vis[i])
        {
            mu[i]=-1;
            pri[++tot]=i;
        }
        for (int j=1;j<=tot;j++)
        {
            if (i*pri[j]>=N) break;
            vis[i*pri[j]]=1;
            if (i%pri[j]!=0)
                mu[i*pri[j]]=-mu[i];
            else
            {
                mu[i*pri[j]]=0;
                break;
            }
        }
    }
    for (int i=1;i<N;i++)
        suf[i]=suf[i-1]+mu[i];

    cas=read();
    for (int cc=1;cc<=cas;cc++)
    {
        a=read(),b=read(),c=read(),d=read(),k=read();
        s1=query(b,d);
        s2=query(a-1,d);
        s3=query(b,c-1);
        s4=query(a-1,c-1);
        ans=s1+s4-s2-s3;
        printf("%d\n",ans);
    }

    return 0;
}
发布了65 篇原创文章 · 获赞 8 · 访问量 2万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览