欧拉筛法

一. 筛法

例题:codevs1430

1. 埃拉托斯特尼筛法
vis[1]=1;
for (int i=2;i<=n;i++)
    if (!vis[i])
    {
        pri[++tot]=i;
        for (int j=i*2;j<=n;j+=i)
            vis[j]=1;
    }

时间复杂度: O(nloglogn)

2. 欧拉筛法

写法:

vis[1]=1;
for (int i=2;i<=n;i++)
{
    if (!vis[i])
        pri[++tot]=i;
    for (int j=1;j<=tot;j++)
    {
        if (i*pri[j]>n) break;
        vis[i*pri[j]]=1;
        if (i%pri[j]==0) break;
    }
}

时间复杂度: O(n)
证:每个和数被最小的质因子筛去

二. 欧拉筛法解积性函数

1. 方法

步骤Ⅰ:证明积性
步骤Ⅱ:考虑下面三方面的实现:
①素数m,求f(m)
②m和比m的最小素因子小的素数n,求f(n*m)
③m和m的最小素因子n:求f(n*m)

2. 例子
(1)欧拉函数

题目:PC 1499

证明:设 n=apiim=bqii ,且 gcd(m,n)=1
ϕ(mn)=mn(11ai)(11bi)=[n(11ai)][m((11bi)]=ϕ(n)ϕ(m)

写法:
①素数m: ϕ(m)=m1
②m和比m的最小素因子小的素数n:
ϕ(mn)=ϕ(m)phi(n)
③m和m的最小素因子n: ϕ(mn)=ϕ(m)n

phi[1]=1;
for (int i=2;i<=n;i++)
{
    if (!phi[i])
    {
        pri[++tot]=i;
        phi[i]=i-1;
    }
    for (int j=1;j<=tot;j++)
    {
        if (i*pri[j]>n) break;
        if (i%pri[j]!=0)
            phi[i*pri[j]]=phi[i]*phi[pri[j]];
        else
        {
            phi[i*pri[j]]=phi[i]*pri[j];
            break;
        }
    }
}
(2)莫比乌斯函数

题目:PC 1492

积性证明:
n=apiim=bqii ,且 gcd(m,n)=1
①若 pi>1 qi>1 ,则 μ(nm)=μ(n)μ(m)=0
②否则,

  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值