关闭

读了几篇boosting文献的收获。。。

距离上一篇blog都3个多月了。最近也是有的懒,看到别人的blog层次都很高,总是介绍些opencv的粗浅的东西,总是感觉自惭形愧。所以一直野就没写啥。白驹过隙,3个月,我都转博了,opencv都2.4.3了,可是感觉自己还是弱爆了,懂得太少,翻来看看以前学习过的知识,也多半一知半解。这次就又翻了翻boosting的东西学习了一下(研一上课就这东西听懂了。。。。)。自己看完了,也不知道自己的理解都...
阅读(15711) 评论(28)

ASM(active shape models)算法介绍

ASM是基于统计学习模型的特征点提取的一种方法。这个方法是95年就提出来的,不过至今仍是我认为比较好的人脸特征点提取的方案。方法的提出人Tim Cootes后来还提出了aam算法,也很有名,但如果简单是特征点的定位的话,我认为asm的效果可能更好一些。ASM跟大多数统计学习方法一样,也包括train和test(or fit)两部分,也就是形状建模build和形状匹配fit。这个算法其实很简单,可以...
阅读(22290) 评论(30)

庖丁解牛TLD(五)——井底之蛙啦~

随着和我交流TLD的朋友越来越多,我渐渐的知道的也多了,才发现我研究的结果只是沧海一粟。 这里先膜拜一下Alan Torres大神,他已经用c++把TLD重新写好了,而且代码很规范。他设计的理念有: 1. depends *only* on OpenCV (2.3)  2. no Matlab!  3. easy to compile and run (on linux, work in...
阅读(37893) 评论(149)

庖丁解牛TLD(四)——Tracking解析

前几节都是根据作者的程序流程一步步介绍作者的工作,感觉只是对代码的一个注释,这次换一个思路,一部分一部分啃,作者的工作主要就是3部分么,tracking,learning,detection。 这次先介绍Tracking的工作。对于Tracking,作者主要使用的是他提出的Forward-Backward Error的办法,使用Lucas-Kanade光流法跟踪,对跟踪的结果,用Forward-...
阅读(14074) 评论(15)

庖丁解牛TLD(三)——算法初始化

上一讲我提到对于算法的初始化工作主要是在tldInit这个函数里实现的。主要分为如下几大步骤,1)初始化Detector。2)初始化Trajectory。3)训练Detector 1)初始化Detector 其中bb_scan为扫描grid区域,该函数输入为boundingBox,输出为一系列的RectBox,是根据boundingBox的大小参数对待搜素区域选择一系列的box作为备选的跟踪区...
阅读(14147) 评论(18)

庖丁解牛TLD(二)——初始化工作(为算法的准备)

我说的初始化,还不是算法的初始化工作,而是读入图像,响应键盘鼠标之类的工作。作者提供的代码中的工作包含了从摄像头读取和从文件中读取两种输入方案。这里介绍一下从文件输入的办法。因为OpenCV从视频读取图像序列的办法有很好的demo,我这里就不介绍摄像头的办法了。TLD下载后有一个文件夹是_input,里面存放着一组图片组,图片文件的名字为00001.png、00002.png....。我读取图片组...
阅读(14300) 评论(4)

庖丁解牛TLD(一)——开篇

最近在网上多次看到有关Zdenek Kalal的TLD的文章,说他做的工作如何的帅,看了一下TLD的视频,感觉确实做的很好,有人夸张的说他这个系统可以和Kniect媲美,我倒是两者的工作可比性不大,实现的方法也不同。但这个哥们做的真的很棒,最可贵的是人家提供了源码可以下载。他相关的工作网上一搜一大片,推荐一个链接http://www.cvchina.net/article-22-1.html,再给...
阅读(22557) 评论(16)
    个人资料
    • 访问:2248626次
    • 积分:17021
    • 等级:
    • 排名:第616名
    • 原创:83篇
    • 转载:0篇
    • 译文:0篇
    • 评论:1512条
    博客专栏
    最新评论
    友情链接
    <a href="http://blog.csdn.net/xiaowei_cqu/>xiaowei_cqu