关闭

可视化篇:mapbox + echarts-gl 展示血脉交通

好久没跟新,怕是这个爱好都要被繁忙的工作给消磨掉了。。 17年也快结束了,此篇应该是作为今年的结尾了,望来年分享更多有趣的东西。...
阅读(317) 评论(0)

Distributed configure (hadoop 2.7.2 & spark 2.1.0)

Distributed configure (hadoop 2.7.2 & spark 2.10)...
阅读(955) 评论(1)

可视化篇:流式数据监控(python)

preface 流式数据的监控,以下主要是从算法的呈现出发,提供一种python的实现思路 其中: 1.python是2.X版本 2.提供两种实现思路,一是基于matplotlib的animation,一是基于matplotlib的ion...
阅读(1367) 评论(0)

2016总结

Preface 2016年过得总算是有惊无险。...
阅读(309) 评论(1)

谱聚类(spectral clustering)及其实现详解

Preface 开了很多题,手稿都是写好一直思考如何放到CSDN上来,一方面由于公司技术隐私,一方面由于面向对象不同,要大改,所以一直没贴出完整,希望日后可以把开的题都补充全。 谱聚类从构造规则化的拉普拉斯矩阵,到对特征矩阵的聚类,个中原理虽然简洁明了,但却蕴含了强大的逻辑结构。...
阅读(3614) 评论(6)

EM算法及其扩展

Preface 题目中的各大算法前人早已总结得很完善,如JerryLead,abcjennifer,pluskid等各路前辈,开此题的目的就是斗胆在前人的基础上,画蛇添足,把自己工作中的一点研究和经验分享出来,多多支持。...
阅读(800) 评论(0)

可视化篇:Echarts实现区域人群密度实时监控

perface 一些工作经验的整理,欢迎留言探讨。 Echarts2的时候曾试过在百度地图背景上加timeline属性,但发现不支持遂以失败告终,e3后来的bmap.js扩展,使得之前的设想得以实现。 下面是《可视化篇:效果图》中第10、11张的实现说明 其中: 1.下图展示数据均为模拟数据 2.使用的echarts版本为3.2.3,关于如何引入百度地图,参考《Echarts3...
阅读(6712) 评论(58)

可视化篇:Echarts3.0引入百度地图(更新)

perface 由于一直抽不开身,留言区以及不少朋友都在问如何在Echarts3.0里引入百度地图,由于之前写的是Echart32.0如何引入,但2.0目前已不再更新,所以这段时间断断续续研究了下,跟大家分享。 Echarts3.0采用标签引入,其相对而言比2.0的模块化引入更容易上手和配置。 下面针对的是Echarts3.2.3,其下载地址为:http://echarts.baidu....
阅读(14848) 评论(62)

SVR(Support Vector Regression)算法详解

Preface 这里就不讲从SVM到SVR了,因为知道SVR怎么回事后,回过头便知道SVM其中道理; 工作中的一些心得总结,所有论述均脱敏过,与工作中的项目,技术,专利均无关; 欢迎各位多多指教。 下面按照该算法的演进思路逐步铺开阐述,由于涉及较多数学,难免会有大量公式推导,下文将会尽量从应用的角度来说明, 让理论更加通俗易懂,所有参考书籍,论文均会在文末贴出,如若有何错误,侵权之...
阅读(9254) 评论(0)

可视化篇:Echarts个人轨迹可视化实现

写在最前 下面是《可视化篇:效果图》中第8、9张的实现说明 其中: 1. 个人轨迹的可视化是echart通过调用百度地图API后实现,关于Echarts如何调用百度地图API,请参考上一篇文章《Echarts引入百度地图》 2. 下图展示的个人轨迹均为虚拟数据 3. 本文只做单用户轨迹展示说明,并未深入探讨批量用户轨迹的可视化及优化 4.使用工具为:Echarts1.Echart...
阅读(10859) 评论(190)

可视化篇:R可视化--迁徙/通勤图

写在最前 下面是《可视化篇:效果图》中第1、4、5、6、7张的实现说明 使用工具为R语言工作后经常要做一些比较贴合用户级别的可视化,R的ggplot2在做一些学术或者理论研究上的可视化时,效果是非常好,基本上能想到的图ggplot都能画出(不要纠结双坐标和3D) 在作静态图时,ggplot2+AI可以展现出印刷级别的效果,具体可以查看:http://theinformationcapit...
阅读(9087) 评论(70)

可视化篇:Echarts2.0引入百度地图

写在最前 Echarts作为百度团队下一个可视化的js库,自2.0更新至3.0以来,其带来的视觉冲击更加强悍,数据可视更加精美,图形交互更加贴合用户。 由于echarts2在百度地图的实例上没有作过多的说明,echarts3更是删除了该实例,另外由于工作需要,捣鼓一番,作个笔记。...
阅读(13442) 评论(180)

可视化篇:R可视化--map图

写在最前 下面是《可视化篇:效果图》中第2、3张的实现说明 使用工具为:R语言1.环境配置 https://cran.r-project.org/ 上下载对应系统及版本的R软件,下文环境为win64的R 根据提示安装R即可,过程不会太复杂 此次用到的包为REmap,其挂靠在https://github.com/ 上,路径我写好了,只需运行R,依次输入: Install.packages(“d...
阅读(8222) 评论(2)

可视化篇:效果图

写在最前 在做可视化的时候,理解自己做的每个图形展示的意义,是多么的至关重要 每做一张图的时候,我都在想,该如何阐述图形背后的故事 下面是一些效果图,每张图,都只为更好地反应数据背后的那段故事。 由于图片最大只能2M,所以调小后有的看起来不是很舒服,多多见谅 所使用的工具主要是:R语言,Echart,D3.js 如何实现在别的文章有详细说明。2016年的广州春运广州南站载客...
阅读(2893) 评论(0)

算法篇:SGD+logistic+Adaboost构建快速迭代增强式LR模型

写在最前: - 之前在新浪开个博客写东西,总有些不方便,后来看了CSDN,内置Markdown,写起来突感一见如故,十分感动。 - 工作中由于经常需要做一些可视化和算法类的研究,所以开个CSDN总结和记录一下。 下面主要讲的是近几个月来的一些研究成果,通过构建增强式的快速迭代logistics判别分类器,就是通过组合随机梯度(SGD),提升算法(adaboost),logistics模...
阅读(2798) 评论(28)
    个人资料
    • 访问:86621次
    • 积分:1101
    • 等级:
    • 排名:千里之外
    • 原创:15篇
    • 转载:0篇
    • 译文:0篇
    • 评论:598条
    邮箱:
    18814101949@163.com
    QQ
    907616004
    最新评论