次小生成树
求最小生成树时,用数组Max[i][j]来表示MST中i到j的最大边权。
求完后,直接枚举所有不在MST中的边,替换掉最大边权的边,更新答案。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 110;
const int INF = 1e9;
bool vis[maxn];
int d[maxn];
int pre[maxn];
int Max[maxn][maxn];
bool used[maxn][maxn];
int g[maxn][maxn];
int n, m;
int Prim()
{
int ans = 0;
memset(vis, false, sizeof vis );
memset(Max, 0, sizeof Max );
memset(used, false, sizeof used );
vis[0] = true;
pre[0] = -1;
for(int i=1; i<n; ++i) {
d[i] = g[0][i];
pre[i] = 0;
}
for(int i=1; i<n; ++i) {
int p = -1;
for(int j=0; j<n; ++j) if(!vis[j] && (p==-1||d[p]>d[j]))
p = j;
if(-1==p) return -1;
ans += d[p];
vis[p] = true;
used[p][pre[p]] = used[pre[p]][p] = true;
for(int j=0; j<n; ++j) {
if(vis[j]) Max[j][p] = Max[p][j] = max(Max[j][pre[p]], d[p]);
if(!vis[j]&&d[j]>g[p][j]) {
d[j] = g[p][j];
pre[j] = p;
}
}
}
return ans;
}
void solve()
{
int res = Prim();
if(-1 == res) { //图不连通
puts("Not Unique!");
return ;
}
int Mn = INF;
for(int i=0; i<n; ++i)
for(int j=i+1; j<n; ++j)
if(g[i][j]!=INF && !used[i][j]) {
Mn = min(Mn, g[i][j]-Max[i][j]);
}
if(Mn==INF || Mn!=0){ //不存在次小生成树 或 不相等
printf("%d\n", res);
}else {
puts("Not Unique!");
}
}
int main()
{
int T;
scanf("%d", &T);
while(T--) {
scanf("%d%d", &n, &m);
for(int i=0; i<n; ++i) for(int j=0; j<n; ++j) g[i][j] = INF;
int x, y, z;
while(m--) {
scanf("%d%d%d", &x, &y, &z);
x--;
y--;
g[x][y] = g[y][x] = z;
}
solve();
}
return 0;
}