OpenCV 基于超像素分割的图像区域选取方法及源码

本文介绍了如何使用SEEDS超像素分割技术进行图像区域选取,结合种子填充算法,实现图像的子分块处理。提供的GitHub工程包含超像素分割示例和种子填充实现,适用于Windows环境,编译依赖OpenCV、CMake和Visual Studio。注意,由于8bit位图的有损性,建议直接在内存中进行区域填充操作,以避免栈溢出问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本系列文章由 @yhl_leo 出品,转载请注明出处。
文章链接: http://blog.csdn.net/yhl_leo/article/details/51386993


工程源码GitHub: yhlleo/SuperpixelRegionFill

抠取图像区域的一个小demo,借助图像超像素分割的方法,将图像成子分块,再利用种子填充算法,选取子块区域。

超像素分割方法,采用论文 SEEDS: Superpixels Extracted via Energy-Driven Sampling 提出的方法,对于物体的边界具有较好的保留,如下图所示。可以辅助目标检测中制作Banchmark。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值