本系列文章由 @yhl_leo 出品,转载请注明出处。
文章链接: http://blog.csdn.net/yhl_leo/article/details/51386993
工程源码GitHub: yhlleo/SuperpixelRegionFill
抠取图像区域的一个小demo,借助图像超像素分割的方法,将图像成子分块,再利用种子填充算法,选取子块区域。
超像素分割方法,采用论文 SEEDS: Superpixels Extracted via Energy-Driven Sampling 提出的方法,对于物体的边界具有较好的保留,如下图所示。可以辅助目标检测中制作Banchmark。

本文介绍了如何使用SEEDS超像素分割技术进行图像区域选取,结合种子填充算法,实现图像的子分块处理。提供的GitHub工程包含超像素分割示例和种子填充实现,适用于Windows环境,编译依赖OpenCV、CMake和Visual Studio。注意,由于8bit位图的有损性,建议直接在内存中进行区域填充操作,以避免栈溢出问题。
最低0.47元/天 解锁文章
5749





