RANSAC Fitting

本文介绍了如何利用RANSAC算法进行2D直线和3D平面的拟合,提供了python实现源码,并探讨了模型的优化。通过归一化处理解决特殊情况下的线性回归问题,以及通过迭代和特征值分析提高拟合质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本系列文章由 @YhL_Leo 出品,转载请注明出处。
文章链接: http://blog.csdn.net/yhl_leo/article/details/73294793


RANSAC 算法是一种常用的估计模型参数的方法,相关的算法介绍网上有很多,这里不再累述,主要介绍如何利用RANSAC 方法进行 2D 直线以及 3D 平面拟合。

Source code (python version): Github/yhlleo/RANSAC-fit


1 拟合模型

之所以要自己去实现算法,主要是由于可以直接使用的代码程序和函数库,对于直线以及平面方程一般使用:

  • lines: y=ax+b
  • planes: z=ax+by+c

这样不通用的表达方式,对于自然情景中的很多线性回归问题,一般没什么问题,但是对于一些简单的应用情景,比如本文提到的直线、平面拟合问题,就不具有绝对的通用性,比如斜率不存在的line : x=n, nR ,上述的直线方程就无法拟合,同理平面拟合也存在类似问题。因此,采用下面的方法更具有一般性:

  • lines: ax+by+c=0
  • planes: ax+by+cz+d=0

对于 2D 直线采用两点式方程,给定直线上任意不同两点 p(x1,y1), q(x2,y2) ,则有:

yy1y2y1=xx1x2x1

展开为点积式:

(yy1)(x2x1)=(xx1)(y2y1)

进而可以得到:

a=y2y1, b=x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值