差值

本文介绍了差值的概念,包括分段线性差值、三次样条差值和高维差值,并通过MATLAB函数`interp1`探讨了一维插值方法。在差值中,分段线性和三次样条插值具有较好的稳定性和实用性,而MATLAB中没有内置的拉格朗日和赫尔米特插值函数,需要自编M文件实现。此外,文章还比较了差值与拟合的区别,并给出了具体的应用示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一概念:

1.差值:

分段线性插值;样条差值;高维差值。

1.1分段线性差值:是将两个相邻节点用直线连起来。在计算x点的差值时,只用到x左右的两个节点,相连接成线性函数。当节点增多时,分段越多,误差越小。不光滑。y=interp1(x0,y0,x)  %x0和y0是已知的节点数组,x是差值点数组,y是差值结果的数组。
1.2三次样条差值:每小区间是三次多项式;在定义域上二阶导数连续。光滑。

y=interp1(x0,y0,x,'spline')

1.3 拉格朗日插值法多用于理论分析,在采用拉格朗日插值方法进行插值计算时通常选取n < 7。
分段线性插值函数(仅连续)与三次样条插值函数(二阶导数连续)虽然光滑性差,但他们都克服了拉格朗日插值函数的缺点,不仅收敛性、稳定性强,而且方法简单实用,计算量小。因而应用十分广泛。

1.3高维差值:
z=interp2(x0,y0,z0,x,y,'method')   %二维差值
其中x0,y0 分别为m 维和n维向量,表示节点,z0 为n × m维矩阵,表示节点值,x,y为一维数组,表示插值点,x 与y 应是方向不同的向量,即一个是行向量,另一个是列向量,z 为矩阵,它的行数为y 的维数,列数为x 的维数,表示得到的插值,

 

2.拟合:

拟合函数y=f(x),使f(xi)与yi的误差平方和在最小二乘意义下最小。

评价拟合效果:残差平方和最小。

拟合不一定过已知点,而差值一定过。

二 matlab函数:

1.一维插值函数 interp1
y=interp1(x0,y0,x,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值