The points P (x1, y1) and Q (x2, y2) are plotted at integer co-ordinates and are joined to the origin, O(0,0), to form ΔOPQ.
There are exactly fourteen triangles containing a right angle that can be formed when each co-ordinate lies between 0 and 2 inclusive; that is,
0 ≤ x1, y1, x2, y2 ≤ 2.
Given that 0 ≤ x1, y1, x2, y2 ≤ 50, how many right triangles can be formed?
先确定P点坐标(x1,y1) 1<=x1,y1<=50
再确定与OP垂直的直线PQ
则PQ上所有整数坐标点分别与P点和O点构成了一个直角三角形且直角位于P点上
OP的斜率为k1=y1/x1 要化简约分一下 ,即分子分母同时除以gcd(x1,y1) k1=dy/dx
PQ的斜率应该为-1/k1=-dx/dy
(1)。考虑PQ上的整数点的Y轴坐标小于P点Y轴坐标的情况:
则位于PQ上的整数点应该是相比较于P点坐标,其X坐标增加dy,Y轴坐标减少dx
则X轴方向,PQ上的整数坐标点个数应该是 (xmax-x1)/dy
Y轴方向,PQ上的整数坐标点个数应该是 y1/dx
综上,PQ上的整数坐标点个数为上面两个数的最小值
(2)。对于PQ上的整数点的Y轴大于P点Y轴坐标的情况:
那部分整数坐标点的个数与P1(y1,x1)的(1)情况是完全相同的
所以对于P和P1这两个关于y=x对称的两个点1<=x1,y1<=50
整数坐标点的个数之和为min( (xmax-x1)/dy,y1/dx)*2+min( (xmax-y1)/dx,x1/dy)*2
最后对于直角位于X轴上,位于Y轴上,位于O顶点这三种情况,个数都为2500
所以最后结果还要加上2500*3
import math
def gcd(a,b):
if a<b:
a,b=b,a
while b!=0:
a=a-b
if a <b:
a,b=b,a
return a
res=2500*3
for i in range(1,51):
for j in range(1,51):
k=gcd(i,j)
tmp=min(math.floor((50-i)*k/j),math.floor(j*k/i))*2
res=res+tmp
print('res = ',res)