形式幂级数介绍

最近在看网络编码的卷积网络编码部分,然后被幂级数环,有理幂级数环,形式幂级数弄昏头了。

整理了一下资料,来源:12

1.幂级数:

幂级数是函数项级数中最基本的一类。它的特点是在其收敛区间绝对收敛,且幂级数在收敛区间内可逐项微分和积分。

幂级数的形式为:,其中称作幂级数系数。

1)收敛性

如果级数处收敛,则它在满足不等式的一切处绝对收敛;

如果级数处发散,则它在满足不等式的一切处发散.


对于幂级数

若在处收敛,则在开区间之内,它亦收敛;

若在处发散,则在开区间之外,它亦发散;


推论:

如果幂级数不是仅在一点收敛,也不是在整个数轴上都收敛,则必有一个确定的正数R存在,它具有下列性质

* 当时,幂级数绝对收敛;

* 当时,幂级数发散;

u*当时,幂级数可能收敛,也可能发散。

正数通常称R作幂级数的收敛半径。


2)幂级数的运算

加减法:

设幂级数的收敛区间分别为,记,当时,有

乘法:


 除法:

2.形式幂级数

1)介绍

形式幂级数和多项式的形式定义有类似之处。可以看做也是不讨论幂级数敛散性,也就是将其中的不定元仅仅看作是一个代数对象,而不是任何具体数值的时候写出的幂级数。

作为形式幂级数来研究时,我们关注的是它本身的结构。

比如说系数为阶乘的形式幂级数:[1,1,2,6,24,120,, \cdots],即使说它对应的幂级数:A = 1 + X + 2X^2+6X^3+24X^4 + 120X^5 + \cdots.

X取任何的非零实数值时都不收敛,我们仍然可以将其作为形式幂级数进行运算。


和多项式环中的元素一样,形式幂级数之间也可以做加减和乘法的运算,具体的计算方式和多项式环一样。比如说设:

B = 2X + 4X^3 + 6X^5 +8X^7 + \cdots.

那么AB的和就是:

A + B = 1 + 3X +  2X^2+10 X^3+24X^4 + 126X^5 + \cdots.
AB = 2X - 6X^2 + 14X^3 - 26X^4 + 44X^5 + \cdots.

其中A + B里面X^3的系数就是ABX^3的系数的和;AB里面X^5的系数就是ABX的阶数相加等于5的项的系数乘积的和:

44X^5 = (1\times 6X^5) + (5X^2 \times 4X^3) + (9X^4 \times 2X).

形式幂级数不仅能够定义乘法,也能定义乘法逆的运算。一个形式幂级数A的逆是指另一个形式幂级数C,使得AC = 1. 如果这样的形式幂级数C存在,就是唯一的,将其记为A^{-1}。同时我们也可以定义形式幂级数的除法:当A的逆存在时,B/A = B\cdot A^{-1}.


形式幂级数上的一个重要映射是系数的提取操作:将一个形式幂级数映射到它的X^n的系数。这个操作常常记作[X^n],比如说对形式幂级数A = 1 - 3X + 5X^2 - 7X^3 + 9X^4 - 11X^5 + \cdots.,就有:

[X^5]A = -11
对以上定义的形式幂级数 B,也有: [X^3]B = 4。又比如: [X^2] ( X + 3 X^2 Y^3 + 10 Y^6) = 3 Y^3  [X^2 Y^3] ( X + 3 X^2 Y^3 + 10 Y^6) = 3。提取映射和多项式环中的对应映射一样,都可以看做是到一个子空间的投影映射。

2)形式幂级数的环结构

所有的不定元为X,系数为某一个交换环R上元素的形式幂级数构成一个环,称为R上变量为X的形式幂级数环,记作R[[X]]

环结构:

首先可以定义集合R[[X]]的范围。作为一个集合,R[[X]]可以用和R^{\mathbb{N}}一样的方法构造。R^{\mathbb{N}}是所有R上元素构成的数列(a_n)_{n\in \mathbb{N} }的集合:

R^{\mathbb{N}} = \{ (a_n)_{n\in \mathbb{N} }, \, \, \, \forall n\in \mathbb{N} , \, a_n \in R \}.

R^{\mathbb{N}}中的元素可以定义加法和乘法:

(a_n)_{n\in\mathbb{N}} + (b_n)_{n\in\mathbb{N}} = \left( a_n + b_n \right)_{n\in\mathbb{N}}
(a_n)_{n\in\mathbb{N}} \times (b_n)_{n\in\mathbb{N}} =\left( \sum_{k=0}^n a_k b_{n-k} \right)_{n\in\mathbb{N}}.

其中乘法的定义方法也叫做求两个数列的系数的柯西乘积,也是一种卷积。可以证明,在以上的定义下,R^{\mathbb{N}}是一个交换环。环的加法零元是(0, 0, 0, ...),乘法幺元是(1, 0, 0,...)。于是我们可以将R中的元素嵌入到R^{\mathbb{N}}之中,

x \in R \, \, \mapsto \, (x, 0, 0,...)

并将(0, 1, 0, 0, ...)映射到不定元X,这样通过以上定义的加法和乘法就可以将R^{\mathbb{N}}中的有限非零元元素同构为:

(a_0, a_1, a_2, \ldots, a_n, 0, 0, \ldots) \mapsto a_0 + a_1 X + \cdots + a_n X^n  = \sum_{i=0 }^n a_i X^i

这样的结构和多项式环是一样的。所以对于更一般的R^{\mathbb{N}}中元素(a_n)_{n\in \mathbb{N} },就可以自然地希望将其对应到 \sum_{i\in \mathbb{N} }a_i X^i

但这个对应方式并不能通过有限项的加法和乘法得到,所以需要用一个约定上的映射\varphi : \, R^{\mathbb{N}} \rightarrow R[[X]]来做到:

(a_0, a_1, a_2, \ldots, a_n,  \ldots) \mapsto \varphi ( a_0, a_1, a_2, \ldots, a_n,  \ldots ) = a_0 + a_1 X + \cdots + a_n X^n + \cdots = \sum_{i\in \mathbb{N} }a_i X^i

这个映射涵盖了之前的多项式的定义,并且可以定义

\left(\sum_{i\in \mathbb{N} } a_i X^i\right) + \left(\sum_{i\in \mathbb{N} } b_i X^i\right) =\sum_{n\in \mathbb{N} } \left( a_n + b_{n}\right) X^n.

以及

\left(\sum_{i\in\N} a_i X^i\right) \times \left(\sum_{i\in\N} b_i X^i\right) =\sum_{n\in\N} \left(\sum_{k=0}^n a_k b_{n-k}\right) X^n.

这个定义使得\varphi 是一个同态,所以 R[[X]]也是一个交换环。


在域F上的幂级数环一般记为F[[X]],形如的有理函数展开为有理数幂级数(Rational Power Series),将域F上的有理幂级数环记为F<X>,F<X>是F[[X]]的子环。

 




  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值