模拟退火算法

转载 2017年01月03日 15:05:41

原文地址:http://www.cnblogs.com/heaad/archive/2010/12/20/1911614.html

一. 爬山算法 ( Hill Climbing )

介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。

爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。

这里写图片描述
图1

二. 模拟退火(SA,Simulated Annealing)思想

爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。

     模拟退火算法描述:

     若J( Y(i+1) )>= J( Y(i) )  (即移动后得到更优解),则总是接受该移动

     若J( Y(i+1) )< J( Y(i) )  (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)

  这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。

  根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:

    P(dE) = exp( dE/(kT) )

  其中k是一个常数,exp表示自然指数,且dE<0。这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。

  随着温度T的降低,P(dE)会逐渐降低。

  我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。

  关于爬山算法与模拟退火,有一个有趣的比喻:

  爬山算法:兔子朝着比现在高的地方跳去。它找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是爬山算法,它不能保证局部最优值就是全局最优值。

  模拟退火:兔子喝醉了。它随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,它渐渐清醒了并朝最高方向跳去。这就是模拟退火。

下面给出模拟退火的伪代码表示。

三. 模拟退火算法伪代码

代码

/*
* J(y):在状态y时的评价函数值
* Y(i):表示当前状态
* Y(i+1):表示新的状态
* r: 用于控制降温的快慢
* T: 系统的温度,系统初始应该要处于一个高温的状态
* T_min :温度的下限,若温度T达到T_min,则停止搜索
*/
while( T > T_min )
{
  dE = J( Y(i+1) ) - J( Y(i) ) ; 

  if ( dE >=0 ) //表达移动后得到更优解,则总是接受移动
Y(i+1) = Y(i) ; //接受从Y(i)到Y(i+1)的移动
  else
  {
// 函数exp( dE/T )的取值范围是(0,1) ,dE/T越大,则exp( dE/T )也
if ( exp( dE/T ) > random( 0 , 1 ) )
Y(i+1) = Y(i) ; //接受从Y(i)到Y(i+1)的移动
  }
  T = r * T ; //降温退火 ,0<r<1 。r越大,降温越慢;r越小,降温越快
  /*
  * 若r过大,则搜索到全局最优解的可能会较高,但搜索的过程也就较长。若r过小,则搜索的过程会很快,但最终可能会达到一个局部最优值
  */
  i ++ ;
}

四. 使用模拟退火算法解决旅行商问题

  旅行商问题 ( TSP , Traveling Salesman Problem ) :有N个城市,要求从其中某个问题出发,唯一遍历所有城市,再回到出发的城市,求最短的路线。

  旅行商问题属于所谓的NP完全问题,精确的解决TSP只能通过穷举所有的路径组合,其时间复杂度是O(N!) 。

  使用模拟退火算法可以比较快的求出TSP的一条近似最优路径。(使用遗传算法也是可以的,我将在下一篇文章中介绍)模拟退火解决TSP的思路:

  1. 产生一条新的遍历路径P(i+1),计算路径P(i+1)的长度L( P(i+1) )

  2. 若L(P(i+1)) < L(P(i)),则接受P(i+1)为新的路径,否则以模拟退火的那个概率接受P(i+1) ,然后降温

  3. 重复步骤1,2直到满足退出条件

      产生新的遍历路径的方法有很多,下面列举其中3种:

  4. 随机选择2个节点,交换路径中的这2个节点的顺序。

  5. 随机选择2个节点,将路径中这2个节点间的节点顺序逆转。

  6. 随机选择3个节点m,n,k,然后将节点m与n间的节点移位到节点k后面。

五. 算法评价

模拟退火算法是一种随机算法,并不一定能找到全局的最优解,可以比较快的找到问题的近似最优解。 如果参数设置得当,模拟退火算法搜索效率比穷举法要高。

模拟退火算法实例分析--Matlab算法

模拟退火算法(实例分析)–Matlab算法 此篇文章为我一学长(Hong Yilin)所作,我又进行了一些加工,在此只为学习使用。此篇为模拟退火算法的实例分析,模拟退火算法的理论讲解见上一篇。题目:我...
  • xufan0001
  • xufan0001
  • 2017年05月15日 19:33
  • 380

模式识别九--模拟退火算法的设计与实现

本文转自:http://www.kancloud.cn/digest/prandmethod/102851         本节的目的是记录以下学习和掌握模拟退火(Simulated Annea...
  • u011596455
  • u011596455
  • 2016年11月26日 19:37
  • 1273

模拟退火算法总结(含例子)

一.模拟退火算法概述   模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最...
  • lcj_cjfykx
  • lcj_cjfykx
  • 2014年03月12日 02:17
  • 12138

模拟退火算法例子

求解某一个方程fun(x)的极小值,很常见的以一种情况是当前的x不管增大还是减小,函数值fun(x)均是增大,这时x就是极值。这是一种完完全全的贪心算法。这样求出的极小值,并不一定整段函数的全局极小值...
  • u010566813
  • u010566813
  • 2016年01月26日 21:43
  • 4900

大白话解析模拟退火算法(simulate annealing)

转自:http://www.cnblogs.com/heaad/ 一. 爬山算法 ( Hill Climbing )          介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪...
  • kai940325
  • kai940325
  • 2015年01月29日 10:46
  • 6784

模拟退火算法的个人理解

模拟退火算法(SA, Simulated Analnggggg)是一种启发式的蒙特卡罗(Monte Carlo)方法。这种算法是在给定的模型空间内搜索墓边函数达到全局极小值的最优模型,它已用于各种最优...
  • byijie
  • byijie
  • 2012年10月23日 22:57
  • 4475

模拟退火算法解旅行商(TSP)问题

该帖子的代码主要转自[模拟退火算法]1 该文对模拟退火算法作了较好的分析,不过该文中举例的TSP的代码有一些问题,我对此作了修正,并在文中最后做出解释。 代码如下:#include #inclu...
  • lsldd
  • lsldd
  • 2015年12月18日 17:04
  • 6073

从遗传算法、粒子群算法、模拟退火算法理解启发式算法优化的本质

温馨小提示:本文章主要提炼了遗传算法(GA)、粒子群算法(PSO)和模拟退火算法(SA)的精髓,故更适合具有一定基础的童鞋加深理解。 一、GA、SA和PSO三种算法的简单回顾 1.1 遗传算...
  • u010397343
  • u010397343
  • 2017年09月08日 14:02
  • 1085

模拟退火算法_数学建模系列

对于那些受大自然的运行规律或者面向具体问题的经验、规则启发出来的方法,人们常常称之为启发式算法。模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状...
  • DearRita
  • DearRita
  • 2016年08月18日 03:09
  • 1139

优化算法——模拟退火算法

模拟退火算法原理 模拟退火算法 模拟退火算法过程 模拟退火算法流程 模拟退火算法的Java实现 Java代码 最后的结果模拟退火算法原理爬山法是一种贪婪的方法,对于一个优化问题,其大致图像(图像地址)...
  • google19890102
  • google19890102
  • 2015年04月30日 15:55
  • 13232
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:模拟退火算法
举报原因:
原因补充:

(最多只允许输入30个字)