遗传算法

转载 2017年01月03日 15:11:41

转载地址:http://www.cnblogs.com/heaad/archive/2010/12/23/1914725.html

遗传算法 ( GA , Genetic Algorithm ) ,也称进化算法 。 遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。因此在介绍遗传算法前有必要简单的介绍生物进化知识。

一.进化论知识

  作为遗传算法生物背景的介绍,下面内容了解即可:

  种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。

  个体:组成种群的单个生物。

  基因 ( Gene ) :一个遗传因子。

  染色体 ( Chromosome ) :包含一组的基因。

  生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。适应度低的个体参与繁殖的机会比较少,后代就会越来越少。

  遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。

  简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变 ( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。

二.遗传算法思想

  借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。这样进化N代后就很有可能会进化出适应度函数值很高的个体。

  举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取) ;首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。

  编码:需要将问题的解编码成字符串的形式才能使用遗传算法。最简单的一种编码方式是二进制编码,即将问题的解编码成二进制位数组的形式。例如,问题的解是整数,那么可以将其编码成二进制位数组的形式。将0-1字符串作为0-1背包问题的解就属于二进制编码。

  遗传算法有3个最基本的操作:选择,交叉,变异。

  选择:选择一些染色体来产生下一代。一种常用的选择策略是 “比例选择”,也就是个体被选中的概率与其适应度函数值成正比。假设群体的个体总数是M,那么那么一个体Xi被选中的概率为f(Xi)/( f(X1) + f(X2) + …….. + f(Xn) ) 。比例选择实现算法就是所谓的“轮盘赌算法”( Roulette Wheel Selection ) ,轮盘赌算法的一个简单的实现如下:

轮盘赌算法
/*
* 按设定的概率,随机选中一个个体
* P[i]表示第i个个体被选中的概率
*/
int RWS()
{
m =0;
r =Random(0,1); //r为0至1的随机数
for(i=1;i<=N; i++)
{
/* 产生的随机数在m~m+P[i]间则认为选中了i
* 因此i被选中的概率是P[i]
*/
m = m + P[i];
if(r<=m) return i;
}
}

交叉(Crossover):2条染色体交换部分基因,来构造下一代的2条新的染色体。例如:

交叉前:

00000|011100000000|10000

11100|000001111110|00101

交叉后:

00000|000001111110|10000

11100|011100000000|00101

染色体交叉是以一定的概率发生的,这个概率记为Pc 。

变异(Mutation):在繁殖过程,新产生的染色体中的基因会以一定的概率出错,称为变异。变异发生的概率记为Pm 。例如:

变异前:

000001110000000010000

变异后:

000001110000100010000

适应度函数 ( Fitness Function ):用于评价某个染色体的适应度,用f(x)表示。有时需要区分染色体的适应度函数与问题的目标函数。例如:0-1背包问题的目标函数是所取得物品价值,但将物品价值作为染色体的适应度函数可能并不一定适合。适应度函数与目标函数是正相关的,可对目标函数作一些变形来得到适应度函数。

三.基本遗传算法的伪代码

基本遗传算法伪代码
/*
* Pc:交叉发生的概率
* Pm:变异发生的概率
* M:种群规模
* G:终止进化的代数
* Tf:进化产生的任何一个个体的适应度函数超过Tf,则可以终止进化过程
*/
初始化Pm,Pc,M,G,Tf等参数。随机产生第一代种群Pop

do
{ 
  计算种群Pop中每一个体的适应度F(i)。
  初始化空种群newPop
  do
  {
    根据适应度以比例选择算法从种群Pop中选出2个个体
    if ( random ( 0 , 1 ) < Pc )
    {
      对2个个体按交叉概率Pc执行交叉操作
    }
    if ( random ( 0 , 1 ) < Pm )
    {
      对2个个体按变异概率Pm执行变异操作
    }
将2个新个体加入种群newPop中
} until ( M个子代被创建 )
用newPop取代Pop
}until ( 任何染色体得分超过Tf, 或繁殖代数超过G )

四.基本遗传算法优化

  下面的方法可优化遗传算法的性能。

  精英主义(Elitist Strategy)选择:是基本遗传算法的一种优化。为了防止进化过程中产生的最优解被交叉和变异所破坏,可以将每一代中的最优解原封不动的复制到下一代中。

  插入操作:可在3个基本操作的基础上增加一个插入操作。插入操作将染色体中的某个随机的片段移位到另一个随机的位置。

遗传算法求解0/1背包问题

遗传算法(genetic algorithm,GA)是计算数学中用于解决最优化问题的搜索算法,是进化算法的一种。进化算法最初是借鉴了达尔文进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自...

神经网络和遗传算法结合(原创)

本人理解:        神经网络是用来处理 非线性关系的,输入和输出之间的关系可以确定(存在非线性关系),可以利用神经网络的自我学习(需要训练数据集 用明确的输入和输出),训练后权值确定,就可以测试...

遗传算法优化BP神经网络

遗传算法原理遗传算法(Genetic Algorithms)是1962年由美国Michigan大学Holland教授提出的模拟自然界遗传机制和生物进化论而形成的一种并行随机搜索最优化方法。它把自然界中...

matlab遗传算法工具箱函数及实例讲解(转引)

核心函数:  (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数  【输出参数】   p...

通俗解释matlab之遗传算法程序部分(二)

(1)程序怎么开始 从哪里开始程序比较好了?直接先主函数吧,然后再分着说: %-------------函数说明---------------- %             主函数       ...
  • on2way
  • on2way
  • 2014年10月14日 20:53
  • 6961

遗传算法求解函数最大值用例

学习遗传算法自己写的用例:参考文章:http://blog.csdn.net/chudongfang2015/article/details/51720607 http://blog.csdn.net...

简单的遗传算法问题之实数编码(二)

遗传算法编码问题对于遗传算法而言,如何将问题的解转换为“染色体”是一个关键问题。通常而言实数编码解决的是约束优化问题,整数编码求的是组合优化问题。选择合适的编码是解决遗传算法问题的基础工作。在本文中,...

MATLAB遗传算法例子二:求多元函数最小值

本文基于谢菲尔德大学遗传算法工具箱。 多元函数表达式如下: 其最小值显然在0处%定义遗传算法参数 NIND=40; %个体数目(Numbe of individua...

【神经网络学习笔记】遗传算法优化BP神经网络-非线性函数拟合

我们知道,在建立神经网络的时候,需要给gege

遗传算法求二元函数的最小值

二元函数为y=x1^2+x2^2,x∈[-5,5]
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:遗传算法
举报原因:
原因补充:

(最多只允许输入30个字)