一、基本流程
1.创建初始种群:随机选择一组可用个体
2.计算适应度值:对每个个体计算适应度值包括后续经过选择、交叉和变异算子后新一代种群个体,
可以并行计算,寻找适应度函数极大值或极小值。
3.应用选择、交叉和变异算子生成新一代种群
4.计算判断迭代终止条件:常用最大迭代次数或最大值与预设值差值达到阀值。还有计算时间、成本达到阀值、最优解比例达到阀值等。
5.选择适应度值最高个体
二、选择算子
1.轮赌盘选择:按适应度值来计算选择概率比例,随机选择组成一定数量组成种群,同一个个体可能会被多次选中。
2.随机抽样:按适应度值计算选择概率比例一次性选择一定数量组成种群。
3.基于排序选择:按适应度值先进行排序,按排序再选择组成种群。
4.适应度缩放:通过固定计算方法对适应度值进行映射,然后再选择
5.锦标赛选择:随机选则一组个体进行对比选择适应度值最高个体放入种群,比赛规模越大优秀个体入选概率越高。
三、交叉算子
1.单点交叉:随机选择双亲某个基因点位因子进行交叉互换
2.多点交叉:双亲多个对应点位进行交叉互换
3.均匀交叉法:子代个体每个基因都通过随机选择父代基因
4.有序列表交叉:对有序基因的个体交叉时使用到
四、变异算子
应用于选择和交叉操作产生的后代,具有一定概率,不能太大并会随着迭代次数增加而增加,主要为维持种群多样性,
主要方法有反转变异、交换变异、逆序变异和重组变异。
四、常用设置参数
1.种群规模 2.交叉率 3.变异率 4.最大迭代次数 5.停止迭代条件 6.是否精英保留和规模大小
遗传算法基本方法和流程
最新推荐文章于 2024-09-12 22:22:14 发布
本文详细介绍了遗传算法的基本流程,包括创建初始种群、计算适应度值、选择、交叉和变异操作,以及常用的设置参数如种群规模、交叉率和变异率。讨论了不同选择算子(如轮赌盘选择、随机抽样等)、交叉算子(如单点、多点等)和变异算子(如反转变异)的应用。
摘要由CSDN通过智能技术生成