关于超实数单子的说明

关于超实数单子的说明

四年前,老翁发表短文,题为“超实数与单子(Monad)”(此文于2013-01-17发表)。现在重新发表如下:

在上世纪中叶,以哥德尔为首的数理逻辑先锋派,高举数学公理化的旗帜,为无穷小恢复了名誉。1976年,J. Keisler在A.Robinson的非标准分析基础上,做了进一步的具体细化与完善,出版了《基础微积分》(无穷小方法)教材。

        很明显的事实是,引进无穷小就必须扩大原有的实数系R,使其成为”超实数“有序域*R。这就带来了一些新的问题。在*R中,如果两个超实数x,y相差一个无穷小,就说它们无限地接近,记为x≈y。显然,关系”≈“具有自反性、对称性与传递性,因而,关系“≈”是一个*R上的等价关系。在”≈“等价关系的作用下,超实数系*R成为一种”団状物“的大聚合。在数学界老前辈Leibniz”单子论”的感召下,现在的人们称这种”団状物“为“单子”(Monad)并且记为:

                                                      Monad(x) = {y∈*R┃y≈x}

在这种超实数“团状物”里面,有无数的相互无限接近超实数,但是,其中有没有原有的实数呢?假定有,那么,单子里面也只能容纳一个实数,因为,两个不同的实数不可能无限地接近,使其同存于一个单子之中。那么,单子里面到底有没有原有的实数呢?研究结果表明:在原有实数系R上的单子里面都有一个实数,正巧是“一对一”。其根源就是,因原有实数系统R是一个完备的有序域(Ordered Field)。在单子里面,超实数继承了原有实数系的某些基本特性。

          在一个超实数“单子”里面,许许多多的超实数团聚在一个原有实数r的周围,以其为它们的共同“凝聚中心”。人们称这个“凝聚中心”r为该单子里面超实数的“标准部分”(standard part),并且引入记号:st(x)=r。由此可见,“st”是链接超实数*R与实数R的一个”桥梁“。

         Let x and y befinite,then:

1)x ≈ y if and only if st(x) = st(y).

2)x ≈ st(x).

3)If r ∈ R then st(r) = r.

4)If x ≤ y  then st(x) ≤ st(y).

         这4条基本性质并不是很显然的,都存在严格的证明。函数st的性质还有很多,在此,我们暂且不提。

         进入本世纪初,超实连续统(HyperContinuum)得到迅速发展及应用,单子结构显示出巨大的潜力。我们不能掉以轻心。实际上,斜率、速度、导数、微分与积分这些基础概念都是借助函数”st“来定义的。

袁萌2月20日

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值