【学习笔记】超实数(Surreal Number)和不平等博弈

前言

最近在学习超实数。太难了。让人疯狂,也让人痴狂。 m a t r i x 67 matrix67 matrix67 果然是战神,早就研究过这东西了。他的文章里有这样一句话,让我感受颇深:

正如 P o i n c a r e ˊ Poincaré Poincareˊ 所说,诗歌的艺术在于给相同的东西取不同的名字,数学的艺术在于给不同的东西取相同的名字。两个看似毫不相关的东西竟然是同构的,这在数学中是最令人激动的事情之一。

Comment. 用 ■ \blacksquare 表示证毕,用 Comment 表示注释。

超实数

一、绪言

不得不说,从欧几里得《几何原本》开始,数学家们就开始了对 “公理系统” 的研究。也正因此,他们构建了很多崭新的数学体系,让人叹为观止。

正如欧式几何与黎曼几何根本就不是一个体系,接下来我们要说的 “数字” 也并不是数字,“小于” 也并不是在数值上更小,甚至根本就没有数值。这只是一种符号。不要试图套用你对 “小于” 的理解。

Comment. 用 x S x_S xS 表示 S S S 集合中的任意元素,比如 φ ( x S ) = 0 \varphi(x_S)=0 φ(xS)=0 等价于 ∀ x ∈ S ,    φ ( x ) = 0 \forall x\in S,\;\varphi(x)=0 xS,φ(x)=0 。表示一个集合时,可能直接列出集合内的元素并且不用花括号 {} 。我只会在不引起歧义的地方这样做,比如 s u r r e a l    n u m b e r \rm surreal\; number surrealnumber 的定义。

二、定义

请先看完每一句话,再重新思考它的含义。如果这一部分看不懂,可以先看看 二点五、个人理解 部分。

  • 定义:一个 超实数 s u r r e a l    n u m b e r \rm surreal\;number surrealnumber)是由两个超实数的集合构成的,且左集合内的超实数都小于右集合内的超实数。换言之,一个超实数可以记为 ⟨ L ∣ R ⟩ \langle L\mid R\rangle LR,其中 x L < x R x_L<x_R xL<xR

  • 定义 一个超实数 a = ⟨ L 1 ∣ R 1 ⟩ a=\langle L_1\mid R_1\rangle a=L1R1 小于等于 b = ⟨ L 2 ∣ R 2 ⟩ b=\langle L_2\mid R_2\rangle b=L2R2,当且仅当 x L 1 < b x_{L_1}<b xL1<b a < x R 2 a<x_{R_2} a<xR2 。简记为 a ⩽ b a\leqslant b ab

  • “大于” 等价于 “不小于等于”,即 a > b ⇔ ¬ ( a ⩽ b ) a>b\Leftrightarrow\neg(a\leqslant b) a>b¬(ab) 。“大于等于” 则是 “小于等于” 换一个方向书写,即 a ⩾ b ⇔ b ⩽ a a\geqslant b\Leftrightarrow b\leqslant a abba 。“小于” 等价于 “不大于等于” 。

Comment. 对非严格不等号的定义可能不同,但最后我们会发现它们相同。

这就是说,一个超实数的定义中就出现了一大堆超实数!而想要进行超实数的比较,就又要进行一大堆超实数的比较!在 O I OI OI 里,这叫做递归。给套娃起了一个好听的名字

不过,我们每次都要用已有的超实数来定义新的超实数,岂不是永远造不出第一个数?其实,最初存在一个集合,它里面的元素都是超实数,那就是空集。所以第一个超实数诞生了:
ο : = ⟨ ∅ ∣ ∅ ⟩ \omicron:=\langle\varnothing\mid\varnothing\rangle ο:=

我也不知道 ο \omicron ο 是啥,反正是造出来的第一个超实数。或许应该命名为亚当。但是我们利用定义可以发现 ο ⩽ ο ⇔ x ∅ < ο \omicron\leqslant\omicron\Leftrightarrow x_{\varnothing}<\omicron οοx<ο o < x ∅ o<x_{\varnothing} o<x,为真。

Comment. 所有涉及 x ∅ x_{\varnothing} x 的条件都是恒为真的,因为它根本没有进行任何判断——对空集的所有元素进行判断,该判断谁呢?

然后我们就可以再造几个超现实数,比如 ϵ : = ⟨ { ο } ∣ ∅ ⟩ \epsilon:=\langle\{\omicron\}\mid\varnothing\rangle ϵ:=⟨{ο} 。根据约定,也可以简写为 ϵ = ⟨ ο ∣ ∅ ⟩ \epsilon=\langle\omicron\mid\varnothing\rangle ϵ=ο 。但是 ⟨ ο ∣ ο ⟩ \langle\omicron\mid\omicron\rangle οο 不是一个合法的超现实数,因为 ο < ο ⇔ ¬ ( ο ⩾ ο ) \omicron<\omicron\Leftrightarrow\neg(\omicron\geqslant\omicron) ο<ο¬(οο),为假,不满足 “左集合元素小于右集合元素” 的要求。

Comment. 用 δ L \delta^L δL 指代 δ = ⟨ P ∣ Q ⟩ \delta=\langle P\mid Q\rangle δ=PQ 中左集合的任意元素,即 x P x_P xP 。同理可定义 δ R \delta^R δR

个人理解 I \rm I I

值得注意的是, δ L < δ < δ R \delta^L<\delta<\delta^R δL<δ<δR 。它就是全序关系中的自反性。你可以先假定它是正确的。

s u r r e a l    n u m b e r \rm surreal\; number surrealnumber 仿照了戴德金分割。比 δ \delta δ 小的数放在 L L L 集合,比 δ \delta δ 大的数放在 R R R 集合,就有 δ : = ⟨ L ∣ R ⟩ \delta:=\langle L\mid R\rangle δ:=LR 。于是也不难理解 δ ⩽ α \delta\leqslant\alpha δα 的定义了:因为 δ L < δ ⩽ α \delta^L<\delta\leqslant\alpha δL<δα,所以需要 δ L < α \delta^L<\alpha δL<α 。另一边也是同理。

但是 s u r r e a l    n u m b e r \rm surreal\; number surrealnumber 毕竟不是 D e d e k i n d \rm Dedekind Dedekind 分割。这种理解可以帮助你记忆这个定义,但是在阅读后面的内容时,还是要尽量少地将 s u r r e a l    n u m b e r \rm surreal\; number surrealnumber 视为实数。

三、全序关系

我们之前不加解释地称呼那种神奇的比较方式为 “小于等于”,当然是有依据的。我们要证明它满足全序关系

  • 非严格 传递性:如果 a ⩽ b a\leqslant b ab b ⩽ c b\leqslant c bc,则 a ⩽ c a\leqslant c ac
  • 完全性 a ⩽ b a\leqslant b ab b ⩽ a b\leqslant a ba 至少有一个成立。

(全序关系还要求反对称性,我们在这里先略去。)

如果满足全序关系,那么这些 “数” 就可以画到数轴上,而 “小于等于” 就等价于判断数轴上的位置关系——与实数一般无二!

能够画出数轴的原因是什么?就是上面两条性质蕴含了一些其他的性质。上面两条性质就像公理,只要有它们,就可以推出其他所有结论。但是,自反性在不满足全序关系时也成立,所以我单独列出来。

  • 自反性 δ ⩽ δ \delta\leqslant \delta δδ,即 δ L < δ \delta^L<\delta δL<δ δ < δ R \delta<\delta^R δ<δR。当然,这同时指出 δ < δ \delta<\delta δ<δ 恒不成立。

证明:首先 ο ⩽ ο \omicron\leqslant\omicron οο 。记 x = δ L x=\delta^L x=δL,则 x < δ ⇔ ¬ ( x ⩾ δ ) ⇔ ¬ ( δ L < x ∧ δ < x R ) x<\delta\Leftrightarrow\neg(x\geqslant\delta)\Leftrightarrow\neg(\delta^L<x\land\delta<x^R) x<δ¬(xδ)¬(δL<xδ<xR) 。而 δ L \delta^L δL 可以取到 x x x,所以 δ L < x ⇒ x < x \delta^L<x\Rightarrow x<x δL<xx<x,利用归纳法,由 x x x 的自反性可知 x < x x<x x<x 不成立,故 δ L < x \delta^L<x δL<x 不成立,即 x < δ x<\delta x<δ 。同理可证 δ < δ R \delta<\delta^R δ<δR ■ \blacksquare

但是传递性确实有用武之地:

  1. 蕴含 “半严格传递性”: a < b ∧ b ⩽ c ⇒ a < c a<b\land b\leqslant c\Rightarrow a<c a<bbca<c 。同理 a ⩽ b ∧ b < c ⇒ a < c a\leqslant b\land b<c\Rightarrow a<c abb<ca<c

Comment. 这个名字 “半严格传递性” 是我随便取的。

证明:反证法,若 ¬ ( a < c ) ⇔ a ⩾ c \neg(a<c)\Leftrightarrow a\geqslant c ¬(a<c)ac,联立 b ⩽ c b\leqslant c bc,由非严格传递性知 a ⩾ b a\geqslant b ab,与 a < b ⇔ ¬ ( a ⩾ b ) a<b\Leftrightarrow\neg(a\geqslant b) a<b¬(ab) 矛盾。 ■ \blacksquare

下文统称为 “传递性”,不一定进行区分,因为二者是等价的。

  1. 蕴含严格传递性: a < b ∧ b < c ⇒ a < c a<b\land b<c\Rightarrow a<c a<bb<ca<c

证明:由完全性知, a < b ⇔ ¬ ( a ⩾ b ) ⇒ a ⩽ b a<b\Leftrightarrow\neg(a\geqslant b)\Rightarrow a\leqslant b a<b¬(ab)ab,由传递性即得。 ■ \blacksquare

上面说了这么多,都是满足全序关系的时候成立的。但是我们要做的是,创造一个新的超实数 δ \delta δ,它并不一定满足全序关系,也就没有上面的性质了!所以,证明非严格传递性时,我们要避免使用 δ \delta δ 的性质;相反,我们可以使用 δ L \delta^L δL δ R \delta^R δR 的性质,因为它们是已知元素,由归纳假设,满足全序关系。

非严格传递性的 证明 a ⩽ b ⇒ a L < b a\leqslant b\Rightarrow a^L<b abaL<b,联立 b ⩽ c b\leqslant c bc,由传递性的归纳知 a L < c a^L<c aL<c 。同理 a < c R a<c^R a<cR 。故 a ⩽ c a\leqslant c ac ■ \blacksquare

上面好像使用了 b b b 上的传递性!若 b b b 就是新元素呢?确实,这里存在一点问题。可参见 个人理解 II 寻求帮助。

注意我特意安排了证明顺序,目的是让下面的证明中,可以使用新元素上的传递性,因为上文已完成证明。而其他性质,则最好避免。

Lemma:新数或已有数 δ \delta δ 都满足 δ L ⩽ δ ⩽ δ R \delta^L\leqslant\delta\leqslant\delta^R δLδδR

Comment. 注意其不能由自反性直接得到。

证明:设 δ = ⟨ P ∣ Q ⟩ \delta=\langle P\mid Q\rangle δ=PQ,任取 x ∈ P x\in P xP,则 x ⩽ δ ⇔ x L < δ ∧ x < δ R x\leqslant\delta\Leftrightarrow x^L<\delta\land x<\delta^R xδxL<δx<δR 。由 x x x L e m m a \rm Lemma Lemma x L ⩽ x x^L\leqslant x xLx,由 δ \delta δ 的自反性知 x < δ x<\delta x<δ,由传递性知 x L < δ x^L<\delta xL<δ 。根据定义 x P < x Q x_P<x_Q xP<xQ,所以 x < δ R x<\delta^R x<δR 成立。综上可知 x ⩽ δ x\leqslant\delta xδ,即 δ L ⩽ δ \delta^L\leqslant\delta δLδ 。同理可证 δ ⩽ δ R \delta\leqslant\delta^R δδR ■ \blacksquare

接下来可以给出完全性的 证明:若 ¬ ( a ⩽ b ) ⇔ ¬ ( a L < b ∧ a < b R ) \neg(a\leqslant b)\Leftrightarrow\neg(a^L<b\land a<b^R) ¬(ab)¬(aL<ba<bR),譬如 a L < b a^L<b aL<b 不成立,则某个 a L a^L aL,记为 x 0 x_0 x0,满足 x 0 ⩾ b x_0\geqslant b x0b 。由 L e m m a \rm Lemma Lemma x 0 ⩽ a x_0\leqslant a x0a 。由传递性知 b ⩽ a b\leqslant a ba,即证。对于 a < b R a<b^R a<bR 不成立的情形同理。 ■ \blacksquare

至此,我们证明了超实数构成全序集!这下子,超实数总算没有那么 “超现实” 了。

由于一些原因,我们先 定义 a a a 等于 b b b 当且仅当 a ⩽ b a\leqslant b ab b ⩽ a b\leqslant a ba,简记为 a = b a=b a=b 。在全序集上,这样定义等号总会是 well-defined \text{well-defined} well-defined

个人理解 I I \rm II II

传递性证明中的归纳法,到底有没有问题?盍循其本:欲证 ( a ⩽ b (a\leqslant b (ab b ⩽ c ) ⇒ a ⩽ c b\leqslant c)\Rightarrow a\leqslant c bc)ac,简记为 [ a , b , c ] [a,b,c] [a,b,c],则只需证明 [ a L , b , c ] [a^L,b,c] [aL,b,c] [ a , b , c R ] [a,b,c^R] [a,b,cR]

找出这样的充分条件关系链,最底部一定是 [ x ∅ , b , c ] [x_{\varnothing},b,c] [x,b,c] [ a , b , x ∅ ] [a,b,x_{\varnothing}] [a,b,x],因为 a → a L a\rightarrow a^L aaL 不形成环。而 [ x ∅ , b , c ] [x_{\varnothing},b,c] [x,b,c] 显然成立,因为需要证明的不等式 x ∅ ⩽ c x_{\varnothing}\leqslant c xc 恒成立。

四、加法

定义加法运算
a + b : = ⟨ a L + b ,    a + b L ∣ a R + b ,    a + b R ⟩ a+b:=\langle a^L+b,\;a+b^L\mid a^R+b,\;a+b^R\rangle a+b:=aL+b,a+bLaR+b,a+bR

它用 个人理解 I 很好理解。并且它具有相当多的性质。不过,有一个容易忽略的问题是:所谓的 “加法” 能够得到合法的 s u r r e a l    n u m b e r \rm surreal\; number surrealnumber 吗?验证 x L < x R x_L<x_R xL<xR 还挺困难的,因为我们对于 “加法” 尚且一无所知。那我们先认定它是合法的,探索一些性质之后,再回来验证封闭性。

  • 加法交换律:显然,因为组成元素完全相同。
  • 加法结合律:显然,因为组成元素完全相同。
  • 逆向 强保序性:若 a + c ⩽ b + d a+c\leqslant b+d a+cb+d c ⩾ d c\geqslant d cd a ⩽ b a\leqslant b ab
  • 正向 强保序性:若 a ⩽ b a\leqslant b ab c ⩽ d c\leqslant d cd a + c ⩽ b + d a+c\leqslant b+d a+cb+d

逆向强保序性的 证明 a ⩽ b ⇔ a L < b ∧ a < b R a\leqslant b\Leftrightarrow a^L<b\land a<b^R abaL<ba<bR 。反证法,以 a L ⩾ b a^L\geqslant b aLb 为例,由正向强保序性知 a L + c ⩾ b + d a^L+c\geqslant b+d aL+cb+d,这与 a + c ⩽ b + d a+c\leqslant b+d a+cb+d 矛盾。 ■ \blacksquare

正向强保序性的 证明 a + c ⩽ b + d ⇔ ( a L + c < b + d a+c\leqslant b+d\Leftrightarrow(a^L+c<b+d a+cb+d(aL+c<b+d a + c L < b + d a+c^L<b+d a+cL<b+d a + c < b R + d a+c<b^R+d a+c<bR+d a + c < b + d R ) a+c<b+d^R) a+c<b+dR) 。反证法即可。以 a L + c ⩾ b + d a^L+c\geqslant b+d aL+cb+d 为例,结合 c ⩽ d c\leqslant d cd,用逆向强保序性知 a L ⩾ b a^L\geqslant b aLb,由自反性和传递性知 a > b a>b a>b,矛盾。 ■ \blacksquare

上面的证明中,我没有特意考虑归纳法的可行性,因为我学这个东西已经学到头大了。统称正向强保序性、逆向强保序性为 “保序性” 。

类似于传递性,保序性蕴含着(下面三条也统称保序性):

  1. a + c ⩽ b + d a+c\leqslant b+d a+cb+d c > d c>d c>d a < b a<b a<b 。反证法,利用逆向强保序性可推出矛盾。
  2. a + c < b + d a+c<b+d a+c<b+d c ⩾ d c\geqslant d cd a < b a<b a<b 。反证法,利用正向强保序性可推出矛盾。
  3. a ⩽ b a\leqslant b ab c < d c<d c<d a + c < b + d a+c<b+d a+c<b+d 。反证法,利用逆向强保序性可推出矛盾。

除此之外的 “严格保序性”,如 ( a < b (a<b (a<b c < d ) ⇒ a + c < b + d c<d)\Rightarrow a+c<b+d c<d)a+c<b+d 只在 “完全性” 成立时才满足。

  • 加法单位元:任意超实数 δ \delta δ 满足 δ + ο = ο + δ = δ \delta+\omicron=\omicron+\delta=\delta δ+ο=ο+δ=δ 。这里 ο = ⟨ ∅ ∣ ∅ ⟩ \omicron=\langle\varnothing\mid\varnothing\rangle ο=

Comment. 这里的 ο \omicron ο 是我们的亚当 ⟨ ∅    ∣    ∅ ⟩ \langle\varnothing\;|\;\varnothing\rangle ,因此需要证明。

加法单位元的 证明:由定义与归纳法, δ + ο = ⟨ δ L + ο ∣ δ R + ο ⟩ = ⟨ δ L ∣ δ R ⟩ = δ \delta+\omicron=\langle\delta^L+\omicron\mid\delta^R+\omicron\rangle=\langle \delta^L\mid \delta^R\rangle=\delta δ+ο=δL+οδR+ο=δLδR=δ

  • 加法逆元 − δ : = ⟨ − δ R ∣ − δ L ⟩ -\delta:=\langle -\delta^R\mid -\delta^L\rangle δ:=δRδL δ \delta δ 的加法逆元,满足 δ + ( − δ ) = ο \delta+(-\delta)=\omicron δ+(δ)=ο

可简记 a + ( − b ) a+(-b) a+(b) a − b a-b ab 。当然你可以理解为减法,因为实数的减法,从某种意义上,也是这样规定的。

加法逆元的 证明 δ − δ = ⟨ δ L − δ ,    δ − δ R ∣ δ R − δ ,    δ − δ L ⟩ \delta-\delta=\langle\delta^L-\delta,\;\delta-\delta^R\mid\delta^R-\delta,\;\delta-\delta^L\rangle δδ=δLδ,δδRδRδ,δδL,先证其大于等于 ο \omicron ο,即 ο < δ R − δ \omicron<\delta^R-\delta ο<δRδ ο < δ − δ L \omicron<\delta-\delta^L ο<δδL 。不妨记 β = δ R \beta=\delta^R β=δR,则 δ R − δ = ⟨ β L − δ ,    β − δ R ∣ β R − δ ,    β − δ L ⟩ ⩽ ο ⇒ ο > β − δ R = β − β = ο \delta^R-\delta=\langle\beta^L-\delta,\;\beta-\delta^R\mid\beta^R-\delta,\;\beta-\delta^L\rangle\leqslant\omicron\Rightarrow\omicron>\beta-\delta^R=\beta-\beta=\omicron δRδ=βLδ,βδRβRδ,βδLοο>βδR=ββ=ο 由归纳法可知是不成立的,故 δ R − δ > ο \delta^R-\delta>\omicron δRδ>ο 。类似地, δ − δ L \delta-\delta^L δδL 左集合内存在 ο \omicron ο,故 δ − δ L > ο \delta-\delta^L>\omicron δδL>ο 。同理 δ − δ ⩽ ο \delta-\delta\leqslant\omicron δδο ■ \blacksquare

  • 等号良定义 a = b a=b a=b ( a + c = b + c (a+c=b+c (a+c=b+c − a = − b ) -a=-b) a=b)

等号良定义的 证明:根据定义 a = b ⇔ ( a ⩽ b a=b\Leftrightarrow(a\leqslant b a=b(ab b ⩽ a ) b\leqslant a) ba),由正向强保序性易证 a + c = b + c a+c=b+c a+c=b+c 。欲证 − a = − b -a=-b a=b,只需先证明命题 a ⩾ b ⇒ − a ⩽ − b a\geqslant b\Rightarrow -a\leqslant-b abab 成立。联立 a + ( − a ) ⩽ b + ( − b ) a+(-a)\leqslant b+(-b) a+(a)b+(b),由逆向强保序性易得。 ■ \blacksquare

加法封闭性的证明:略。真的不想验证了,我倦了

无用之用

这一节仅用于欣赏数学之美。也许 “美” 有引号。

超实数存在乘法运算。而且这个乘法运算有助于我们理解 nim \text{nim} nim 积。但是仍然偏向 useless \text{useless} useless 的范畴。好像本来超实数就非常没用啊
a b : = ⟨ a L b + a b L − a L b L ,    a R b + a b R − a R b R ∣    a L b + a b R − a L b R ,    a R b + a b L − a R b L ⟩ \begin{aligned} ab:=\langle &a^Lb+ab^L-a^Lb^L,\;a^Rb+ab^R-a^Rb^R\\ \mid\;&a^Lb+ab^R-a^Lb^R,\;a^Rb+ab^L-a^Rb^L\rangle \end{aligned} ab:=aLb+abLaLbL,aRb+abRaRbRaLb+abRaLbR,aRb+abLaRbL

就连用 D e d e k i n d \rm Dedekind Dedekind 分割都有点难以想到了: ( a − a L ) ( b − b L ) ⩾ 0 ⇔ a b ⩾ a L b + a b L − a L b L (a-a^L)(b-b^L)\geqslant 0\Leftrightarrow ab\geqslant a^Lb+ab^L-a^Lb^L (aaL)(bbL)0abaLb+abLaLbL

而且,这个操作满足交换律、结合律、分配率、存在逆元(式子就不给出了),所以超实数构成了 有序域 o r d e r e d    f i e l d \rm ordered\; field orderedfield),定义可见百度百科。而最恐怖的是:

由超实数构成的有序域是最大的有序域,其他所有可能的有序域,都只是超实数域里的一个子有序域。

它穷尽了有序域!真是个怪物!而且它还存在无穷大 ω = ⟨ N ∣ ∅ ⟩ \omega=\langle\N\mid\varnothing\rangle ω=N,以及比无穷大更大的 ω + 1 = ⟨ ω ∣ ∅ ⟩ \omega+1=\langle\omega\mid\varnothing\rangle ω+1=ω,甚至最后可以造出 ω ω \omega^\omega ωω 这样的怪物。叹为观止。

五、回归现实

没错,我们终于要回归 R \R R 的怀抱了。 R e a l s \rm Reals Reals 写为 R \Reals R,那么 s u r r e a l    n u m b e r \rm surreal\;number surrealnumber 的集合就叫 S \Bbb S S 吧。

首先,我们约定 0 = ο 0=\omicron 0=ο 。注意,目前来看 0 0 0 只是一个记号,不是你认识的那个最小的自然数。为什么这样约定呢?因为 ο \omicron ο 是加法单位元,这和 0 0 0 R \R R 中的地位相同。

然后,我们约定 1 = ϵ = ⟨ 0 ∣ ∅ ⟩ 1=\epsilon=\langle 0\mid\varnothing\rangle 1=ϵ=0,因为它是乘法单位元,虽然我们不知道。接下来,我们给出定义: ⟨ 1 ∣ ∅ ⟩ \langle 1\mid\varnothing\rangle 1 用符号 2 2 2 来表示,而符号 3 3 3 表示 ⟨ 2 ∣ ∅ ⟩ \langle 2\mid\varnothing\rangle 2 这个超实数,以此类推。它们目前都只是符号,而不是自然数。

形式化地,用 f : N ↦ S f:\N\mapsto\Bbb S f:NS 表示这样的对应关系,则 f ( n ) = ⟨ f ( n − 1 ) ∣ ∅ ⟩    ( n ⩾ 1 ) f(n)=\langle f(n{\rm-}1)\mid\varnothing\rangle\;(n\geqslant 1) f(n)=f(n1)(n1)

而我们要证明的就是:超实数的运算,与其代表符号的自然数运算,是对应的。比如 1 + 1 = 2 1+1=2 1+1=2,在超实数意义下就是 ϵ + ϵ = ⟨ ϵ ∣ ∅ ⟩ \epsilon+\epsilon=\langle\epsilon\mid\varnothing\rangle ϵ+ϵ=ϵ 。证明很简单,利用归纳法, f ( a ) + f ( b ) = ⟨ f ( a ) + f ( b − 1 ) ,    f ( a − 1 ) + f ( b ) ∣ ∅ ⟩ = ⟨ f ( a + b − 1 ) ∣ ∅ ⟩ = f ( a + b ) f(a)+f(b)=\langle f(a){\rm+}f(b{\rm-}1),\;f(a{\rm-}1){\rm+}f(b)\mid\varnothing\rangle=\langle f(a{\rm+}b{\rm-}1)\mid\varnothing\rangle = f(a{\rm+}b) f(a)+f(b)=f(a)+f(b1),f(a1)+f(b)=f(a+b1)=f(a+b)

类似地,我们可以写出 − 1 , − 2 , … , − n -1,-2,\dots,-n 1,2,,n 的超实数形式,代入加法逆元的定义式即可。比如 − 3 = ⟨ ∅ ∣ − 2 ⟩ -3=\langle\varnothing\mid -2\rangle 3=2 。它们都满足整数的运算法则。

至此,我们可以说 Z ⊆ S \Z\subseteq\Bbb S ZS 。由于已证明其满足整数的运算法则,可以假装 Z \Z Z 都是 S \Bbb S S 的基本元素。

我们知道 S \Bbb S S 不可能只包含 Z \Z Z 。最好的例子就是 ⟨ 0 ∣ 1 ⟩ \langle 0\mid 1\rangle 01,由 L e m m a \rm Lemma Lemma 可知它一定不是整数。它究竟是什么呢?是 1 2 \frac{1}{2} 21 。证明先略过。然后 ⟨ 0 ∣ 1 2 ⟩ \langle 0\mid{1\over 2}\rangle 021 是什么?是 1 4 1\over 4 41 。所以我们大胆猜想:其值是区间中点。写成公式就是
⟨ n 2 k    |    n + 1 2 k ⟩ = 2 n + 1 2 k + 1    ( n ∈ Z ,    k ∈ N ) \left\langle\frac{n}{2^k}\;\middle|\;\frac{n+1}{2^k}\right\rangle=\frac{2n+1}{2^{k+1}}\;(n\in\Z,\;k\in\N) 2kn 2kn+1=2k+12n+1(nZ,kN)

δ = ⟨ n 2 k ∣ n + 1 2 k ⟩ \delta=\langle{n\over 2^k}\mid{n+1\over 2^k}\rangle δ=2kn2kn+1,只需证明 δ + δ = 2 n + 1 2 k \delta+\delta=\frac{2n+1}{2^k} δ+δ=2k2n+1(已知实数),因为已知实数构成阿贝尔群,所以 δ \delta δ 的赋值就会是恰当的。

运用归纳法。 k = 0 k=0 k=0 时,则 δ = ⟨ n ∣ n + 1 ⟩ \delta=\langle n\mid n+1\rangle δ=nn+1,此时 β : = δ + δ = ⟨ n + δ ∣ n + 1 + δ ⟩ \beta:=\delta+\delta=\langle n+\delta\mid n+1+\delta\rangle β:=δ+δ=n+δn+1+δ,由 n < δ < n + 1 n<\delta<n+1 n<δ<n+1 可知 2 n < β L < 2 n + 1 2n<\beta^L<2n+1 2n<βL<2n+1 2 n + 1 < β R < 2 n + 2 2n+1<\beta^R<2n+2 2n+1<βR<2n+2,于是可以验证 2 n + 1 ⩽ β 2n+1\leqslant\beta 2n+1β β ⩽ 2 n + 1 \beta\leqslant 2n+1 β2n+1,故 δ = 2 n + 1 2 = 2 n + 1 2 k + 1 \delta=\frac{2n+1}{2}={2n+1\over 2^{k+1}} δ=22n+1=2k+12n+1

k > 0 k>0 k>0 时, β : = δ + δ = ⟨ n 2 k + δ ∣ n + 1 2 k + δ ⟩ \beta:=\delta+\delta=\langle\frac{n}{2^k}+\delta\mid\frac{n+1}{2^k}+\delta\rangle β:=δ+δ=2kn+δ2kn+1+δ,记 λ = 2 n + 1 2 k = ⟨ n 2 k − 1 ∣ n + 1 2 k − 1 ⟩ \lambda=\frac{2n+1}{2^k}=\langle\frac{n}{2^{k-1}}\mid\frac{n+1}{2^{k-1}}\rangle λ=2k2n+1=2k1n2k1n+1,则 δ < n + 1 2 k ⇒ ( n 2 k + δ < 2 n + 1 2 k = λ \delta<\frac{n+1}{2^k}\Rightarrow(\frac{n}{2^k}+\delta<\frac{2n+1}{2^k}=\lambda δ<2kn+1(2kn+δ<2k2n+1=λ δ + δ < n + 1 2 k − 1 = λ R ) ⇒ β ⩽ λ \delta+\delta<\frac{n+1}{2^{k-1}}=\lambda^R)\Rightarrow\beta\leqslant\lambda δ+δ<2k1n+1=λR)βλ 。同理 β ⩾ λ \beta\geqslant\lambda βλ,于是 δ = λ 2 = 2 n + 1 2 k + 1 \delta=\frac{\lambda}{2}={2n+1\over 2^{k+1}} δ=2λ=2k+12n+1

可是上面只得到了 ⟨ 0 ∣ 1 4 ⟩ \langle 0\mid{1\over 4}\rangle 041 的值。如果是 ⟨ 0 ∣ 3 4 ⟩ \langle0\mid{3\over 4}\rangle 043 呢?有一个神奇的定理:

  • 最简性定理:对于 δ \delta δ,如果 x x x 满足 x L ⩽ δ L < x < δ R ⩽ x R x^L\leqslant\delta^L<x<\delta^R\leqslant x^R xLδL<x<δRxR,那么 x = δ x=\delta x=δ 。形象化地说,在 x L x^L xL x R x^R xR 之间的 “最简单” 元素是唯一的。

最简性定理的 证明 δ ⩽ x ⇔ ( δ L < x \delta\leqslant x\Leftrightarrow(\delta^L<x δx(δL<x δ < x R ) \delta<x^R) δ<xR),由 δ < δ R ⩽ x R \delta<\delta^R\leqslant x^R δ<δRxR 知其成立。同理可证 δ ⩾ x \delta\geqslant x δx ■ \blacksquare

我们又知道 n 2 k    ( 2 ∤ n ) {n\over 2^k}\;(2\nmid n) 2kn(2n) 的超现实数形式,代入最简性定理,就可以知道其值了!

哦,对了, 1 3 1\over 3 31 的超现实数形式是什么?答案是 D e d e k i n d \rm Dedekind Dedekind 分割。让 L L L 包含所有小于 1 3 1\over 3 31 的、分母为 2 k 2^k 2k 的有理数, R R R 则包含大于 1 3 1\over 3 31 的,则 1 3 = ⟨ L ∣ R ⟩ {1\over 3}=\langle L\mid R\rangle 31=LR 。我们有理由相信其正确性。

所以,事实上 R ⊆ S \R\subseteq\Bbb S RS 。如果你看了 无用之用,你可能会明白我想表达什么。

不平等博弈

一、绪言

终于,我们可以讲一点有用的东西了。尽管这用处微乎其微,并且我也还没完全学懂

从这里开始,你对 “小于等于” 的印象需要完全推翻。因为很快我们会说到:可能 a ⩽ b a\leqslant b ab b ⩽ a b\leqslant a ba 都不成立。此时, ⩽ \leqslant 真的只是一个符号而已。

二、定义

在不平等博弈中,两个玩家可以进行的操作是不同的。假设二者分别是左玩家和右玩家,左玩家进行操作可以使得游戏变为 L L L 集合中的任意一个,而右玩家进行操作则只能使得游戏变为 R R R 集合中任意一个。

  • 定义:一个 游戏 δ = ⟨ L ∣ R ⟩ \delta=\langle L\mid R\rangle δ=LR,其中 L , R L,R L,R 都是游戏的集合。

可以发现,游戏的定义和超实数是多么相似啊!但是没有了 x L < x R x_L<x_R xL<xR 的约束条件,也会产生许多麻烦……这个我们后面再讲。但是 δ L \delta^L δL 的符号还是可以使用的。​

接下来我们来看看游戏的加法:同时进行两个游戏,但是每次只能选择一个游戏走一步。要么在 a a a 中走一步,要么在 b b b 中走一步,所以
a + b : = ⟨ a L + b ,    a + b L ∣ a R + b ,    a + b R ⟩ a+b:=\langle a^L+b,\;a+b^L\mid a^R+b,\;a+b^R\rangle a+b:=aL+b,a+bLaR+b,a+bR
没错,跟超实数又是完全一样的!我们已经迫不及待想要知道游戏的加法逆元了。游戏的取反:左右玩家交换角色。那么,现在左玩家操作后,实际上得到的是正常意义下的 δ R \delta^R δR 局面;这个局面也应该交换角色。所以
− δ : = ⟨ − δ R ∣ − δ L ⟩ -\delta:=\langle-\delta^R\mid-\delta^L\rangle δ:=δRδL
你应该知道为什么要把超现实数与不平等博弈放在一起讲了。

于是我们可以用同样的方法定义 “小于等于” 等符号。等号则按下不表。

三、性质

对比一下 超实数全序关系 一节,我们发现 L e m m a \rm Lemma Lemma 不再成立了,所以完全性也就不再成立了!所以严格传递性也不成立了!但是 传递性自反性 都仍然成立。

再对比 四、加法 一节,可见 加法交换律加法结合律保序性 成立,而严格保序性不成立;加法单位元 仍然是 ο \omicron ο加法逆元 仍然存在(事实上就是游戏的取反)。

等号的良定义、加法的封闭性就略过吧。顺便提一句,乘法的诸多性质仍然成立。希望学有余力的读者自行研究

四、胜负判定

规定:不能行动者输。如何利用它来判断胜负关系呢?对于游戏 δ \delta δ,有如下结论:

  • 左玩家后手可以取胜,当且仅当 δ ⩾ ο \delta\geqslant\omicron δο
  • 右玩家后手可以取胜,当且仅当 δ ⩽ ο \delta\leqslant\omicron δο

归纳法可证。初状态 ο \omicron ο 游戏,对于左右玩家来说,都是后手可以取胜的,因为没有任何操作可做。然后考虑 δ ⩾ ο ⇔ ο < δ R ⇔ ¬ ( δ R ⩽ ο ) \delta\geqslant\omicron\Leftrightarrow\omicron<\delta^R\Leftrightarrow\neg(\delta^R\leqslant\omicron) δοο<δR¬(δRο),即右玩家操作后得到的所有游戏,都是右玩家后手无法取胜的。所以左玩家后手时,让右玩家操作一次得到 δ R \delta^R δR,左玩家就赢了。同理 δ ⩽ ο \delta\leqslant\omicron δο 时右玩家后手可以取胜。

上面的结论蕴含着这样的道理:

  1. δ = ο \delta=\omicron δ=ο 时,后手必胜。
  2. δ > ο \delta>\omicron δ>ο δ < ο \delta<\omicron δ<ο 时,先手必胜。

但是这东西很糟糕。一是因为我后面的就看不懂了,二是 因为它不能被化简。相当于建出了状态转移图,对时间复杂度没有任何优化。所以,它最好用的时候是,先手操作总是劣于后手操作,即 δ L < δ R \delta^L<\delta^R δL<δR 成立。此时可以直接用超实数理论进行计算。

更多可参见马耀华《浅谈超现实数与不平等博弈》

平等博弈

一、绪言

如果不讲讲这个,那么这篇博客就完全没有实用价值了

二、定义

其实就是 L , R L,R L,R 集合完全相同的 “不平等博弈”。简记为 δ = ⟨ L ⟩ \delta=\langle L\rangle δ=L

最基础的游戏是 nim \text{nim} nim 石子堆,即 ∗ n = ⟨ ∗ 0 , ∗ 1 , … , ∗ n − 1 ⟩ *_n=\langle*_0,*_1,\dots,*_{n-1}\rangle n=0,1,,n1,其中 ∗ 0 = ο *_0=\omicron 0=ο

三、性质

  • 反身性 δ + δ = ο \delta+\delta=\omicron δ+δ=ο 。本质上是 δ = − δ \delta=-\delta δ=δ
  • SG \textit{SG} SG 函数:游戏 ⟨ ∗ a , ∗ b , ∗ c , …   ⟩ = ∗ mex ⁡ ( a , b , c , …   ) \langle*_a,*_b,*_c,\dots\rangle=*_{\operatorname{mex}(a,b,c,\dots)} a,b,c,=mex(a,b,c,),即有多个后继时,等价于石子数量为 mex ⁡ \operatorname{mex} mex nim \text{nim} nim 堆。

证明:记 δ = ⟨ ∗ a , ∗ b , ∗ c , …   ⟩ ,    λ = ∗ m e x \delta=\langle*_a,*_b,*_c,\dots\rangle,\;\lambda=*_{\rm mex} δ=a,b,c,,λ=mex,只需要证 δ − λ = ο \delta-\lambda=\omicron δλ=ο δ + λ = ο \delta+\lambda=\omicron δ+λ=ο,即 δ \delta δ λ \lambda λ 游戏同时进行时后手必胜。从博弈的角度去证明:若操作 δ \delta δ,使其变为 ∗ x *_x x,当 x < mex x<\text{mex} x<mex 时,将 λ \lambda λ 操作为 ∗ x *_{x} x,以后都对称操作,后手胜利;当 x > mex x>\text{mex} x>mex 时,将 ∗ x *_x x 操作为 ∗ mex *_{\text{mex}} mex,以后都对称操作,后手胜利;若操作 λ \lambda λ,使其变为 ∗ x *_x x,则后手将 δ \delta δ 也操作为 ∗ x *_x x,以后都对称操作,后手胜利。 ■ \blacksquare

事实上, SG \textit{SG} SG 函数说明了一个很重要的问题:任何博弈都能等效为 ∗ x *_x x,如果无环。但是更妙的还在后面:

  • SG \textit{SG} SG 定理:游戏的和 ∗ a + ∗ b = ∗ a ⊕ b *_a+*_b=*_{a\oplus b} a+b=ab 。我的另一篇博客中有对此的浅薄理解。

证明:浅薄的方法就不说了。有一个高级证明方法是:肯定存在二元运算 ⊕ \oplus ,因为 ∗ a + ∗ b *_a+*_b a+b 根据 SG \textit{SG} SG 函数肯定是可以写成 ∗ m *_{m} m 的,且 m m m a , b a,b a,b 唯一确定。所以我们知道 { N , ⊕ } \{\N,\oplus\} {N,} 构成阿贝尔群:单位元是 0 0 0,逆元是自身,有交换律,且单位元的阶为 1 1 1,其余元素阶为 2 2 2,所以 ⊕ \oplus 与按位异或是同构的。别问我这段话啥意思,我也不知道 ■ \blacksquare

四、 NIM \text{NIM} NIM

这东西比较奇特,我单独讲一下。定义式
a ⊗ b = mex ⁡ { ( a ′ ⊗ b ) ⊕ ( a ⊗ b ′ ) ⊕ ( a ′ ⊗ b ′ ) }    ( 0 ⩽ a ′ < a ,    0 ⩽ b ′ < b ) a\otimes b=\operatorname{mex}\{(a'\otimes b)\oplus(a\otimes b')\oplus(a'\otimes b')\}\;(0\leqslant a'<a,\;0\leqslant b'<b) ab=mex{(ab)(ab)(ab)}(0a<a,0b<b)

可以发现它其实就是超实数的乘法;只不过将游戏的和 + + + 改为了 ⊕ \oplus ,相当于对下标操作。也就是说
∗ a ∗ b = ∗ a ⊗ b *_a*_b=*_{a\otimes b} ab=ab

不知道你们是否感到了这种魅力: ⊕ \oplus ⊗ \otimes 其实就是 “取对数”,转变为下标操作。而游戏的乘法具有交换律、结合律、分配率,所以 ⊗ \otimes 也有这些性质。当然分配率就是对 ⊕ \oplus 的了。

它的组合博弈意义是啥呢?就是那种特殊的翻硬币游戏,奇丑无比的规则……

更多可参见罗煜翔《浅谈 Nimber \text{Nimber} Nimber 和多项式算法》

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值