核密度估计(Kernel density estimation)

本文由  en.wikipedia.org/wiki/Kernel_density_estimation   核密度估计的英文wiki百科整理。


核密度估计(Kernel density estimation),是一种用于估计概率密度函数的非参数方法,为独立同分布F的n个样本点,设其概率密度函数为f,核密度估计为以下:



K(.)为核函数(非负、积分为1,符合概率密度性质,并且均值为0),h>0为一个平滑参数,称作带宽(bandwidth),也看到有人叫窗口。Kh(x) = 1/h K(x/h). 为缩放核函数(scaled Kernel)。有很多种核函数,uniform,triangular, biweight, triweight, Epanechnikov,normal,等。各种核函数的图形如下:



  Epanechnikov 内核在均方误差意义下是最优的,效率损失也很小。由于高斯内核方便的数学性质,也经常使用 K(x)= ϕ(x),ϕ(x)为标准正态概率密度函数。核密度估计与直方图很类似,但相比于直方图还有光滑连续的性质。下图为直方图与核函数估计对 x1 = −2.1, x2 = −1.3, x3 = −0.4, x4 = 1.9, x5 = 5.1, x6 = 6.2 六个点的“拟合”结果。


在直方图中,横轴间隔为2,数据落到某个区间,此区间y轴增加1/12。在核密度估计中,不放另正态分布方差为2.25,红色的虚线表示由每一个数据得到的正态分布,叠加一起得到核密度估计的结果,蓝色表示。

        那么问题就来了,如何选定核函数的“方差”呢?这其实是由h来决定,不同的带宽下的核函数估计结果差异很大,如下图:



Kernel density estimate (KDE) with different bandwidths of a random sample of 100 points from a standard normal distribution. Grey: true density (standard normal). Red: KDE with h=0.05. Black: KDE with h=0.337. Green: KDE with h=2.

不同的带宽得到的估计结果差别很大,那么如何选择h?显然是选择可以使误差最小的。下面用平均积分平方误差(mean intergrated squared error)的大小来衡量h的优劣。

在weak assumptions下,MISE (h) =AMISE(h) + o(1/(nh) + h4) ,其中AMISE为渐进的MISE。而AMISE有,

其中,

为了使MISE(h)最小,则转化为求极点问题,



当核函数确定之后,h公式里的R、m、f''都可以确定下来,有(hAMISE ~ n−1/5),AMISE(h) = O(n−4/5)。

        如果带宽不是固定的,其变化取决于估计的位置(balloon  estimator)或样本点(逐点估计pointwise estimator),由此可以产产生一个非常强大的方法称为自适应或可变带宽核密度估计。



在Python中,确定核密度估计Kernel Density Estimation,简称KDE)中的bin数量和宽度是一个重要步骤,因为它直接影响估计的准确性。以下是一些常用的方法: ### 1. 使用Scott公式 Scott公式是一种常用的方法,它根据数据的标准差和样本数量来计算bin的宽度。 ```python import numpy as np import matplotlib.pyplot as plt from scipy.stats import gaussian_kde # 生成一些示例数据 data = np.random.normal(0, 1, 1000) # 使用Scott公式计算bin宽度 std = np.std(data) n = len(data) bin_width = 3.5 * std / (n ** (1/3)) # 计算bin数量 bin_count = int((np.max(data) - np.min(data)) / bin_width) # 进行KDE kde = gaussian_kde(data) # 生成x轴数据 x = np.linspace(np.min(data), np.max(data), 1000) p = kde(x) # 绘制KDE plt.hist(data, bins=bin_count, density=True, alpha=0.5, label='Histogram') plt.plot(x, p, label='KDE') plt.legend() plt.show() ``` ### 2. 使用Silverman公式 Silverman公式是另一种常用的方法,它对Scott公式进行了改进。 ```python # 使用Silverman公式计算bin宽度 bin_width = (std * (4 / (3 * n)) ** 0.2) # 计算bin数量 bin_count = int((np.max(data) - np.min(data)) / bin_width) ``` ### 3. 使用交叉验证 交叉验证是一种更灵活的方法,可以通过最大化似然函数来选择最佳的bin宽度。 ```python # 使用交叉验证选择bin宽度 def cross_validation_bandwidth(data): from sklearn.model_selection import GridSearchCV grid = GridSearchCV(gaussian_kde, {'bw_method': np.linspace(0.1, 1.0, 30)}, cv=5) grid.fit(data) return grid.best_params_['bw_method'] bandwidth = cross_validation_bandwidth(data) kde = gaussian_kde(data, bw_method=bandwidth) p = kde(x) # 绘制KDE plt.hist(data, bins=bin_count, density=True, alpha=0.5, label='Histogram') plt.plot(x, p, label='KDE') plt.legend() plt.show() ``` ###
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值