自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Leo的博客

资深IT人士吐血打造IT专业博客,贡献给广大网民最干货的企业信息化建设方案和工具的分析、点评

  • 博客(2123)
  • 资源 (9)
  • 收藏
  • 关注

原创 零基础入门数据可视化大屏开发!超全超强大屏模板素材请收好!

在这篇文章中,我们深入探讨了可视化大屏的开发流程以及各种可视化组件在大屏中的作用。作为企业数据展示和决策支持的重要工具,可视化大屏具有不可忽视的价值和潜力。在众多的可视化大屏开发工具中,帆软FineVis可视化大屏开发工具凭借其强大的功能和用户友好的界面,受到了广大开发者和企业用户的喜爱和信赖。FineVis提供了丰富的可视化组件和模板,支持多种数据源的接入和灵活的数据处理方式,帮助用户轻松实现复杂的数据展示和分析需求。

2024-04-11 16:59:57 2427

原创 40份炫酷可视化大屏模板,一个代码都不敲,半天学不会来找我

俗话说,字不如图,图不如动,想要直观地表达数据潜在的价值,并且还同时具有炫酷的效果,毫无疑问只有可视化大屏了。说到大屏,你可能第一时间就想到是这样的:我印象中大概是从2015年开始,可视化大屏突然就成了BI项目中很火的需求了,其实在此之前,像DashBoard、驾驶舱、仪表板的概念就非常流行了正是因为现在企业的信息化发展速度加快,对可视化的要求越来越高,硬件、软件技术都更加成熟了,企业内部就开始流行可视化大屏了,至今已经成为诸多老板最喜欢的展示方式。说起大屏的工具,除了像阿里之外,市场上也有很

2021-09-08 14:20:23 25036 306

原创 用8小时,找到了200张可视化大屏模板,你可以直接用

2020年了,还有人不会可视化大屏?我以前不止一次给各位看过可视化大屏,无论是什么做的,最终的意义都是要让数据展现的更直白、美观、有科技感一点!或许,你以前是用Excel做可视化大屏 或者,你以前是用vue.js等前端工具做可视化大屏 又或者,你用的是echarts、Python等专业的工具 再或者,专业的可视化工具FineReport和FineBI也是你的最爱我想了想,并不是所有人都会代码,而且这东西制作起来也有难度,那如何0代码做出来呢?我花了近8小时,为各位找到了200多张可视化大

2020-08-07 10:44:41 11894 634

原创 知乎人均985?Python爬50W数据,BI做出可视化后,我有了答案

一次完整的python数据分析流程是怎么样的?使用python从网站抓取数据,并将这些数据保存到SQLite数据库中,然后对数据进行清洗,最后对数据进行数据可视化分析。可是熟悉的人应该知道,python爬取简单,但是分析起来是很困难的,SQL语句、Pandas和Matplotlib这些十分繁琐,一般人也不会。于是我想到了用一种更简单的方式进行数据分析,那就是python爬取+BI分析。...

2019-12-19 09:44:33 47692 64

原创 管理驾驶舱不是面子工程!一文讲清搭建思路和具体步骤

企业搭建管理驾驶舱常陷三大误区:将可视化大屏等同于管理驾驶舱、技术部门主导忽略业务需求、指标堆砌缺乏重点。失败主因包括:目标模糊、数据质量差、脱离业务场景。有效搭建需四步:1)明确使用对象和待解决问题;2)筛选关键指标,遵循"少即是多"原则;3)打通数据链路,确保准确性;4)设计可视化看板,实现"一眼看全、一键查看、按需适配"。管理驾驶舱核心价值在于辅助决策,而非展示技术,需以业务需求为导向,形成数据到行动的闭环。

2025-08-25 23:58:27 531

原创 销售额和营业收入的区别在哪?哪个值应该更大一些?

销售额与营业收入的核心差异在于业务视角与财务视角的不同。销售额是业务端的合同总金额(未扣除折扣、退货等),而营业收入是财务端确认的净收入(含主营业务与其他业务收入)。两者在统计口径、时间维度(收付实现制vs权责发生制)、税务影响(增值税vs所得税)及业务目标(扩张规模vs盈利质量)上存在本质区别。行业特性、企业阶段(扩张期差异大)及财务健康度(警惕收入虚高或销售激进)决定二者大小关系。理想状态下,企业需平衡高销售额与高质量营业收入,实现可持续增长。

2025-08-25 23:47:20 197

原创 库存指标怎么算?一文讲清3大库存分析指标

库存周转天数、周转率和安全库存的计算方法及实际应用。文章指出常见误区(如用收入代替成本计算周转率),详细解析了安全库存的Z值算法及业务调整场景,并强调三者之间的动态平衡关系(效率-成本-风险)。最后提出落地的四步法:统一口径、历史复盘、安全库存诊断和动态监控,帮助企业在降低资金占用的同时避免断货风险。不同行业需根据特性制定差异化的库存策略,这些指标应作为供应链优化的决策工具而非孤立数据。

2025-08-25 23:43:20 474

原创 数据采集怎么做?质量、效率与合规该怎么平衡?

数据采集是数据工作的基础环节,需要在质量、效率和合规之间找到平衡点。首先明确采集目标,通过业务拆解和全链路思维圈定必要数据;其次严控数据质量,在采集环节设置完整性、准确性等校验关卡;再者分层提升效率,运用自动化工具、优化架构设计并建立闭环流程;最后筑牢合规防线,遵守法律法规、采用技术保障并设计合规流程。根据业务阶段动态调整优先级,初创期重效率、成长期重质量、成熟期重合规。通过定期复盘和指标评估,持续优化采集策略,实现"需要时即有、正确且合规"的理想状态。

2025-08-25 23:35:31 326

原创 经营分析的价值不在报告厚度,而在行动颗粒度

经营分析的核心在于从数据中提炼可执行的策略,而非仅复盘过去。文章提出4步闭环法:1)界定真问题,避免将现象误判为问题;2)通过指标树拆解数据,精准定位异常点;3)区分相关性与因果关系;4)以最小成本试错验证策略。同时警示三大误区:过度依赖数据忽视业务直觉、沉迷复杂模型、重报告轻落地。有效的经营分析应聚焦“如何更赚钱”,将数据转化为具体行动,如案例中通过社群运营优化提升留存率9%。最终目标是将数据从“历史记录”升级为“未来决策蓝图”。

2025-08-24 23:45:18 554

原创 质量管理6大常用工具:APQP、PPAP、MSA、FMEA、SPC、CP

质量管理六大工具(APQP、FMEA、PPAP、MSA、SPC、CP)不是简单的表格填写,而是覆盖产品全生命周期的风险防御体系。APQP是跨部门协同的质量规划,FMEA用于量化风险优先级,PPAP验证生产系统稳定性,MSA确保测量数据可靠,SPC实现过程预警,CP则转化为可执行的操作指南。这六大工具需协同使用,将经验转化为系统能力,从预防到控制形成闭环管理。关键在于转变思维,把工具作为解决问题的武器而非任务,才能真正提升质量管理水平。

2025-08-24 23:41:06 414

原创 资金管理必知必会的五大经典模型

企业资金管理的五大实用模型:1)现金周转周期模型(CCC)用于测算资金流转效率;2)最佳现金持有量模型(鲍莫尔和米勒-奥尔模型)帮助确定最优现金储备;3)存货资金占用模型(EOQ)优化采购批量;4)信用政策决策模型平衡账期与风险;5)现金流预算模型实现资金动态预测。这些模型从资金周转、现金储备、库存管理、信用政策和现金流预测等维度,为企业提供科学的资金管理工具。文章强调模型应用需结合企业实际,并建议采用数字化手段实现动态调整,最终实现资金高效运转、精准配置和增值的目标。

2025-08-24 23:37:03 596

原创 数据建模怎么做?一文讲清数据建模全流程

数据建模全流程实践指南:从需求分析到迭代优化 本文系统梳理数据建模全流程,重点解决四个核心问题:1.需求分析需明确业务目标、数据边界和使用场景,避免简单记录需求;2.模型设计推荐维度建模,详解确定业务过程、识别维度、确定度量和选择模型类型四步法;3.实施落地强调数据分层、ETL设计和存储选型的平衡;4.迭代优化需关注性能下降、新需求满足和存储成本等信号。文章指出,数据建模是连接业务与技术的桥梁,应该"先能用再优化",在业务迭代中持续改进。

2025-08-24 23:32:45 479

原创 2025五款热门数据湖产品大盘点!帮你找到最适配的数据湖产品

在当今数字化时代,数据就是企业的核心资产,藏着能驱动业务的关键价值。而数据湖作为存海量原始数据的核心方案,现在越来越多企业都想落地,但市场上产品太多,挑得人眼花缭乱——到底哪款才适合自己?其实不用急,咱们一步步来。

2025-08-21 23:57:55 916

原创 BI看板有什么用?不懂技术怎么做业务报表?

本文针对BI看板设计中常见问题,提出五个关键步骤:1.明确使用场景(日常监控/专题分析/临时取数);2.构建"三层指标法"(北极星指标1-2个+辅助指标3-5个+预警指标2-3个);3.按场景选择可视化方式(监控类用直观图表/分析类用交互图表/汇报类用叙事图表);4.优化交互设计(角色定制/一键直达/默认值设置);5.持续迭代更新。强调BI看板核心在于服务业务需求而非技术炫技,建议设计前先厘清"为谁解决什么问题",通过简化操作流程、突出关键指标来提升使用效率。

2025-08-21 23:30:56 866

原创 终于有人把数据开发讲明白了

数据开发的本质是用数据解决业务问题的系统工程,需贯穿需求洞察、数据采集、处理、服务和运维五大环节。关键在于:从业务问题出发,精准获取数据;分层治理确保数据可信;将数据产品化服务;建立稳定运维体系。成功的底层逻辑是技术、业务与人的协同,而非单纯技术实现。最终目标是驱动业务决策,创造可衡量的商业价值。

2025-08-21 23:25:10 847

原创 什么是数据湖?一文读懂数据湖架构

本文介绍了数据湖的概念、特性与架构。数据湖是一种集中式存储库,可容纳各种结构化、半结构化和非结构化数据,保留原始数据格式,具有强大的存储和管理能力。其核心特性包括:支持多种数据类型、原始数据保留、完善的数据生命周期管理等。数据湖架构经历了从Hadoop到Lambda再到Kappa的演进,强调数据资产化管理,具备强大的数据接入和处理能力。建设数据湖需要考虑企业实际需求和技术成本,并重视数据安全管理。数据湖特别适合业务多变、需要进行探索性分析的企业,但需要专业团队和充足资源支持。

2025-08-20 23:34:27 760

原创 到底什么是数据湖?一文讲清楚数据湖相关所有概念

数据湖是一种存储全量原始数据的系统,支持结构化、半结构化和非结构化数据,具有低成本、高灵活性的特点,适用于大数据分析和机器学习。与数据库专注于结构化数据和高频事务处理不同,数据湖更侧重于数据存储和探索。数据仓库则存储经过加工的结构化数据,查询性能更优。湖仓一体结合了数据湖和数据仓库的优势,提供统一的数据管理与分析平台。企业选择数据存储方案时需根据业务需求和数据情况决定,数据湖适合数据探索,数据库适合日常业务操作,数据仓库适合结构化分析,湖仓一体则适合既有探索需求又需高效分析的场景。

2025-08-20 23:29:23 613

原创 供应链、采购、物流,到底该怎么分工与合作?

供应链、采购、物流三大职能冲突频发,根源在于目标不一致、信息断层和责任模糊。采购需构建韧性供应网络而非单纯砍价,物流要平衡库存与交付而非仅降运费,供应链应成为全局资源调度中心而非传声筒。解决之道在于:1)用RACI矩阵明确责任分工;2)通过BI工具实现数据实时共享;3)建立"全局+部门"双维度考核机制。只有让专业的人专注专业领域,同时为全局目标负责,才能实现1+1+1>3的协同效应。

2025-08-20 23:22:16 737

原创 电商会计必会的10种账务处理方法,一键套用!

本文总结了10种主流电商交易模式的账务处理要点,包括平台直营、一件代发、直播带货、预售定金等。重点分析了不同模式下收入确认、费用归集、资金结算等关键环节的会计处理逻辑,特别强调了电商业务中容易出现的税务风险点。文章指出电商会计需要将业务规则与会计准则深度融合,并提供了针对各种业务场景的具体处理方法和注意事项,如预售定金应计入"合同负债"、跨境电商的汇率处理等,为电商企业财务人员提供了实用指导。

2025-08-20 23:16:02 1027

原创 什么是大数据平台?大数据平台和数据中台有什么关系?

大数据平台与数据中台是企业数据管理的两大核心组件。大数据平台侧重技术实现,解决海量数据的存储、处理和分析问题,提供强大的计算能力;数据中台则聚焦业务服务,通过数据整合、治理和服务化,实现企业数据的统一管理与高效复用。两者互为补充,大数据平台为数据中台提供技术支撑,数据中台则让平台能力更好地服务业务。企业应根据实际需求,合理规划两者的建设路径,既要夯实底层技术基础,又要构建高效的数据服务体系,才能真正实现数据驱动业务的目标。

2025-08-19 23:48:42 638

原创 2025 六大主流大数据平台大盘点!找到最适合你的大数据平台

本文对比分析了2025年六大主流大数据平台的核心功能与应用场景。FineDataLink擅长数据集成与治理,提供实时采集、灵活转换和自动化调度;Hadoop以分布式存储和离线计算见长,适合PB级数据处理;Spark凭借内存计算优势,在批处理和实时分析中表现优异;Kafka专注高吞吐量消息传输;MongoDB提供灵活的非结构化数据存储方案;Redis则是高性能缓存的首选。文章详细剖析了各平台的功能特点、优缺点及适用场景,并建议企业根据数据类型、处理需求和技术能力进行选型,强调应先解决核心痛点再考虑扩展功能。

2025-08-19 23:42:49 818

原创 数据管理最容易混淆的3个概念:元数据、数据元、元模型

本文系统解析了数据治理中的三个核心概念:元数据、数据元和元模型。元数据是"数据的数据",描述数据资产的基本信息(如表结构、来源等);数据元是数据的最小业务单元,明确定义业务概念的技术标准;元模型是"模型的模型",规范数据模型的设计规则。三者协同工作:元模型指导模型设计,数据元确保字段标准化,元数据记录数据全生命周期信息。理解这些概念及其配合关系,对数据治理、数据仓库建设和主数据管理至关重要,能有效提升数据质量和管理效率。

2025-08-19 23:35:56 772

原创 真正有用的杜邦分析,必须会看这三个维度!

ROE(净资产收益率)是衡量股东回报的重要指标,传统杜邦分析将其分解为销售净利率、总资产周转率和权益乘数。然而,这套方法在分析互联网和科技公司时存在局限:用户价值未计入资产、研发投入被费用化。改进方法包括:1)将用户价值资本化;2)区分费用与长期投资;3)用现金流验证利润真实性。升级后的杜邦分析能更真实反映企业盈利能力,帮助投资者穿透财务表象,识别企业真正的价值创造能力。

2025-08-19 23:29:08 871

原创 什么是主数据管理?一文理清主数据管理全流程!

主数据管理是企业数字化转型的核心环节,指对企业核心共享数据(如客户、产品、供应商信息)的全生命周期管理。其特点在于共享性、稳定性和权威性,区别于交易数据和分析数据。实施主数据管理能提升决策质量(准确数据支撑)、运营效率(减少重复劳动)、业务协同(统一数据标准)和合规性(规范数据使用)。完整流程包含6大步骤:数据规划(制定标准)、采集(多源抽取)、整合(匹配清洗)、存储(架构设计)、维护(更新审核)和使用(共享分析)。需重点应对数据质量(清洗校验)、安全(加密管控)、组织协调(跨部门协作)和技术更新

2025-08-19 00:02:43 1188

原创 2025 六大热门主数据管理工具大盘点!找到最适合你的主数据管理工具

主数据管理是企业数字化转型的关键,本文对比了6款主流工具:1)FineDataLink:功能全面,支持ETL和实时处理,适合中大型企业;2)Informatica MDM:数据匹配合并能力强,但价格高;3)SAP Master Data Governance:与SAP生态无缝集成;4)Talend MDM:开源灵活,适合预算有限企业;5)Oracle解决方案:数据治理功能完善;6)IBM InfoSphere MDM:扩展性强,含行业模板。选型需综合考虑业务需求、数据规模、预算和技术能力。

2025-08-18 23:57:40 1031

原创 存货周转率≠越高越好!质量比数值更重要​​

存货周转率是反映企业运营效率的重要指标,但常被简单化理解。本文从四个方面深入剖析:1)计算逻辑上强调应使用销售成本而非收入,并指出平均存货的潜在误导性;2)行业差异源于商业模式不同(如快消品与白酒);3)高周转率未必总是最优,需警惕断货损失、产品升级和虚假效率三大陷阱;4)提出业务改进方法,包括周转天数拆解定位问题、"存货-现金流"模型量化价值、ABC分类重点管理。

2025-08-18 23:11:51 808

原创 23页PDF |一文讲清数据资产管理体系建设!

这份文件全面探讨了金融企业数据资产全生命周期管理体系建设,从政策背景切入,分析数据要素市场化改革下金融行业推动数据资产管理的三大驱动力,还围绕数据战略构建、资源盘点与分类、“业数技” 协同治理、三元驱动应用、资产估值及战略选择展开,为金融企业将数据从 “沉睡资源” 转化为 “核心资本” 提供系统指引。

2025-08-18 16:19:56 304

原创 2025 五款热门数据处理平台大盘点,让你更懂数据处理

本文对比分析了2025年市场主流的五款数据处理平台核心特性。FineDataLink以全流程覆盖能力和可视化操作见长,适合中大型企业复杂场景;Talend开源优势明显,但处理性能有限;Informatica PowerCenter和DataStage专为海量数据设计,但价格昂贵且技术门槛高;Alteryx则主打业务人员自助分析。选型需综合考量数据规模(日均处理百万级数据的企业建议采用分布式架构产品)、技术团队水平(无专业团队的企业优先考虑低代码平台)及预算

2025-08-17 23:41:50 895

原创 数据处理的方法有哪些?一文搞懂数据处理四种基本方法

数据处理是通过采集、存储、加工和分析将原始数据转化为有用信息的过程,对企业决策、运营效率、业务创新和产品质量提升具有关键作用。其四种核心方法包括:数据清洗(去错去重补缺失)、数据转换(统一格式与结构)、数据分析(挖掘规律与模式)和可视化呈现(直观展示结果)。实施时需注意数据质量把控、安全防护及技术更新。选择工具应基于业务需求,而非盲目追求技术复杂度。有效的处理能让数据从"杂乱数字"转变为支撑决策的"价值资产",是数字化转型的基础能力。

2025-08-17 23:34:46 1222

原创 什么叫作数据处理?数据处理和数据治理是什么关系

数据处理与数据治理是企业数据管理的两大关键环节。数据处理聚焦技术层面,通过采集、清洗、分析等操作将原始数据转化为有价值信息,具有数据量大、类型多样、实时性高等特点;数据治理则侧重管理体系,通过制度规范确保数据质量、安全与合规,具有全局性、规范性和持续性特征。二者相辅相成:数据处理挖掘数据价值支撑业务决策,数据治理奠定数据基础保障数据可用性。企业需将二者有机结合,既打好数据基础又充分发挥数据价值,才能提升数据资产效能。

2025-08-17 23:25:24 790

原创 数据处理到底能做什么?数据处理核心原理与流程拆解

数据处理是将原始数据转化为有用信息的关键过程,主要包括数据采集、存储、加工、分析和输出五个环节。其特点体现在数据量大、类型多样、实时性要求高和准确性要求严格等方面。数据处理在企业决策支持、运营效率提升、业务模式创新、产品质量改进和科学研究等领域发挥着重要作用,能够挖掘数据价值,促进业务发展。实现有效数据处理需要掌握数据库管理、编程语言、统计学和数据可视化等技能,同时要重视数据安全保障。企业应根据自身需求选择适合的技术方案,平衡成本与效益,充分发挥数据价值,推动业务增长。

2025-08-17 23:19:08 785

转载 28页PDF |一文讲清银行业数字化人才需求与培养方案!

这份文件全面探讨了中国银行业数字化转型中的人才问题,分析行业发展现状与人才需求结构,指出金融数智化与安全是核心主题,金融产品经理、安全风控等岗位需求突出,还介绍了智联猎头助力银行人才战略的实践,为行业人才建设提供参考。

2025-08-15 15:20:16 61

原创 大数据平台有什么作用?一文读懂大数据平台架构

本文系统介绍了大数据平台的核心作用与架构体系。大数据平台通过整合5V特征(体量大、类型多、价值密度低、速度快、真实性)的数据,实现从采集、存储到分析应用的全流程处理。其核心价值体现在:推动决策科学化、提升运营效率(如优化生产物流)、促进业务创新(如个性化推荐)和增强企业竞争力。架构层面包含八大模块:存储计算(Hadoop/Hive等)、数据采集(Sqoop/Flume)、应用系统(BI/分析平台)、实时/离线处理(Kafka/Spark)、任务调度(Oozie)、监控管理(数据治理工具)

2025-08-14 22:25:38 881

原创 都知道大数据重要,企业该如何建设大数据平台

从概念到实践 本文系统介绍了大数据平台建设的核心内容。首先阐释了大数据及其5V特征(量大、多样、高速、价值、真实),以及大数据平台与传统数据处理系统的区别。其次分析了大数据平台的四大作用:提升决策科学性、优化运营效率、创新业务模式、增强企业竞争力。最后重点提出企业建设大数据平台的7个关键步骤:明确目标需求、选择技术工具、数据采集整合、构建数据仓库、开展分析挖掘、建立安全管理体系、培养专业人才。文章强调,平台建设需结合企业实际需求,分阶段实施,通过技术工具与专业团队的配合,才能充分发挥大数据价值。

2025-08-14 22:21:04 607

原创 销售分析,最该盯紧的3大环节

销售分析三大关键环节:目标校准、过程追踪、根因定位。90%的销售分析报告存在方向错误,80%的分析精力浪费在无效环节。目标校准需综合市场容量、竞品渗透率等指标进行双维度验证;过程追踪要关注LTV等深层指标,避免被表面增长误导;根因定位需通过数据切片、AB测试等方法找出真正因果关系。这三个环节形成"分析-决策-验证"的闭环,才能让销售分析真正推动业绩提升。

2025-08-14 22:13:03 1057

原创 从降本增效来看,物流分析到底该怎么做?

本文聚焦物流企业如何通过数据分析实现降本增效。首先指出物流成本问题往往隐藏在二级、三级指标中(如等待装车时间),需建立分层指标体系进行钻取分析。其次强调数据质量是关键:采集需贴合业务场景(如记录急刹车次数),清洗需去除业务噪声(如校验异常时间),并以订单为中心打通全链路数据。随后提出三个优化场景:运输环节采用动态配载模型降低空驶率,仓储环节通过路径优化缩短拣货距离,配送环节建立异常预警减少客诉。最后指出核心在于培养"数据+业务+算法"的复合能力,让数据洞察回归"人车货场"的真实场景,才能真正转化为利润。

2025-08-14 22:10:25 694

原创 都在谈数据安全,可你真的会做数据全生命周期防护吗?

数据全生命周期保护是一个系统性工程,需要覆盖数据从产生到销毁的各个环节。文章从数据产生、存储、传输、处理、使用、共享、归档与销毁七个阶段,详细阐述了各环节的安全防护要点:数据产生阶段需加强源头控制;存储环节要注意介质选择和加密备份;传输过程需建立安全通道;处理和使用环节要重点防范内部风险;共享阶段需严格评估接收方资质;归档销毁必须合规彻底。同时强调三大关键注意事项:明确数据资产分布、重视人员管理、持续优化安全策略。

2025-08-13 23:01:41 970

原创 10句话,轻松读懂资产负债表

本文通过10个要点解析资产负债表的分析技巧。1.资产负债表反映特定时点的财务状况,而非经营成果;2.核心公式"资产=负债+所有者权益"是分析基础;3.区分流动资产(变现能力)与非流动资产(长期价值);4.货币资金需区分可用与受限部分;5.应收账款要关注账龄和客户集中度;6.存货价值在于周转效率而非数量;7.固定资产需评估成新率与业务匹配度;8.流动负债分析要结合流动比率和速动比率;9.非流动负债要避免期限错配;10.所有者权益变动比总额更具参考价值。

2025-08-13 22:55:11 1133

原创 成本管控到底怎么管、怎么控?还不会数字化你就out了!

当前企业普遍面临"增收不增利"困境,传统成本管控存在四大痛点:意识局限、分析浅表、数据质量差、系统孤岛。构建数字化成本管控体系需实现:1)多口径灵活分析;2)智能数据治理;3)精准成本还原;4)全价值链覆盖。通过打通ERP/MES等系统数据,实现从研发到售后的全流程成本可视化。典型案例显示,某国企通过三级分析体系优化资源配置,光伏企业应用系统自动分摊年省2000+工时。数字化转型使成本管控从被动削减转向主动优化,成为企业提升盈利能力的必由之路。

2025-08-12 23:52:57 893

原创 采购怎么选供应商?关键看这5个维度!

【采购必看】5维筛选法教你选对供应商 采购选供应商常踩的坑:只看价格、依赖老关系或被空头承诺迷惑。本文分享实用的"5维筛选法":1)质量要全流程可控;2)交付看应对波动能力;3)成本算总持有成本(TCO);4)服务重问题解决主动性;5)技术看协同升级能力。每个维度都提供具体评估指标,如质量体系认证、产能利用率、研发投入占比等。强调选供应商是动态过程,要定期评估,选择能共同成长的长期合作伙伴。这套方法可避开90%采购陷阱,助你找到省心又省钱的好供应商。

2025-08-12 23:47:18 891

阿米巴+BI解决方案.pdf

本文针对各行业现状,分析了新型企业经营模式——阿米巴经营理念,提出将大数据应用于阿米巴经营理念相结合的经营模式,帮助企业完成数字化转型。

2019-09-11

电力行业BI解决方案.pdf

本文基于电力行业背景及数据应用背景,提出一站式商业智能(BI)与数据分析平台与解决方案。整体解决方案通过对业务场景和物理场景的双重梳理,为企业管理服务实现赋能。

2019-09-11

物流行业BI解决方案.pdf

本文基于物流行业背景及数据应用背景,提出一站式商业智能(BI)与数据分析平台与解决方案。整体解决方案通过对业务场景和物理场景的双重梳理,为企业管理服务实现赋能。

2019-09-11

银行行业BI解决方案.pdf

本文基于银行行业背景及数据应用背景,提出一站式商业智能(BI)与数据分析平台与解决方案。整体解决方案通过对业务场景和物理场景的双重梳理,为企业管理服务实现赋能。

2019-09-11

医疗行业BI解决方案.pdf

本文基于医疗行业背景及数据应用背景,提出一站式商业智能(BI)与数据分析平台与解决方案。整体解决方案通过对业务场景和物理场景的双重梳理,为企业管理服务实现赋能。

2019-09-11

建筑行业BI解决方案.pdf

本文基于建筑行业背景及数据应用背景,提出一站式商业智能(BI)与数据分析平台与解决方案。整体解决方案通过对业务场景和物理场景的双重梳理,为企业管理服务实现赋能。

2019-09-11

零售业数据化经营(BI)解决方案.pdf

零售业数据化运营解决方案

2021-09-29

BI数据人才与数据文化.pdf

本文针对各企业现有的数据应用困境,提出一站式数据分析和数字化转型方案,帮助企业全方位塑造数据价值,摆脱数据应用困境。

2019-09-11

能源化工行业BI解决方案.pdf

本文基于能源化工行业背景及数据应用背景,提出一站式商业智能(BI)与数据分析平台与解决方案。整体解决方案通过对业务场景和物理场景的双重梳理,为企业管理服务实现赋能。

2019-09-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除