IT小牛的IT见解

资深IT人士吐血打造IT专业博客,贡献给广大网民最干货的企业信息化建设方案和工具的分析、点评。...

排序:
默认
按更新时间
按访问量

有人把李白杜甫一生的旅行足迹做了地图,发现了大事!

现在,很多人出门旅游,必须做的一件事是:打卡纪念!可是没有飞机、没有高铁的千百年前,不能远途旅游,生活岂不是很无聊?那你真是想太多了,最近有人总结了诗人们一生到过的地方。看完你会发现,古人去过的地方,多到你无法想象!最“浪”的诗人—李白人生得意须尽欢,莫使金樽空对月。李白“浪”起来,真的就没别的诗...

2017-07-17 11:08:39

阅读数:2892

评论数:0

数据分析没价值?——深思对业务的洞察有多少?

数据分析要轻方法、重思路,而思路的基本来源是对业务的理解和思考。切勿坐在办公桌前对着数据空想,或者拖来拖去乱研究。一位刚加入互联网企业的数据分析师,他发现公司广告业务的客户每个月都会流失几百个(互联网企业的盈利模式大都为广告和游戏)向上级反馈后,他启动了一个“互联网广告客户流失分析”项目,认认真真...

2017-08-01 10:09:25

阅读数:602

评论数:0

数据体系建设的开端,该如何规划平台?

洪海龙腾电子商务股份有限公司是一家集电商运营服务、电商自营业务、软件研发与销售、电商培训服务于一体的互联网营销服务公司。公司总部在青岛,全公司500多名员工。2016年淘宝“双十一”活动,销量前二十的商家,有7家是其客户,其现已成为淘宝体系服务商家数最多的运营服务商。数据平台建设电子商务,主要分三...

2017-07-19 16:57:20

阅读数:648

评论数:0

4个关键,如何清晰的做好数据分析

数据分析就近几年看来,越来越有一种像通用技能发展的趋势,从生产、研发、市场、销售到运营,多多少会存在数据分析的需求。关于数据分析,网络上有不少分析报告案例,但细细读来,好多都缺少辨证,逻辑不严谨,又或者分析得浅尝辄止。恰逢最近读了《大数据分析的道与术》,是一套很完整的理论书籍,结合自己多年的数据从...

2017-07-10 09:45:43

阅读数:1210

评论数:0

深度解析艾瑞咨询《2017年度中国商业智能行业研究报告》

近日,艾瑞咨询发布了2017年度《中国商业智能行业研究报告》,聚焦于人工智能和商业智能的行业应用,即人工智能技术如何应用于商业智能决策,以及如何实现商业经营的智能化与自动化。该报告指出,中国企业精细化运营的需求正在爆发,对商业智能解决方案的要求提高了,尤其是金融、电商、物流和出行等领域,更需要商业...

2017-06-23 09:37:35

阅读数:1436

评论数:0

步步高告诉你如何获客增长:4种数字化驱动案例

文 | 帆软数据应用研究院 船长更多大数据资讯和企业案例可关注 :知乎专栏《帆软数据应用研究院》当下互联网的余震未醒,“新零售”又提出。成本上升、人口红利消失、电商渗透率饱和都在倒逼零售的整体升级。不管业内业外,政府公司,都在谈转型。但关键如何转型,基点在哪?这都需要探索。有人说,消费变革的起点一...

2017-06-19 14:58:09

阅读数:1053

评论数:0

案例解读|江苏银行—智多星大数据分析云平台实践

2014年10月,江苏银行夏平董事长确立了利用大数据实现弯道超车的发展战略,将大数据应用提升到全行发展的战略层面。2015年上半年,江苏银行完成了大数据平台选型和建设,选择发布版hadoop进行底层数据存储加工。接着,进行内外部数据整合。三个阶段的完成,意味着大数据基础设施建设工作已完成,如果把大...

2017-06-16 10:16:15

阅读数:1685

评论数:0

信用卡年轻消费群体数据分析和洞察报告

文 | 帆软数据应用研究院 船长本文源自2017年贵阳数博会《大数据科技引擎助理金融创新》论坛中百融金服林佳琳女士的报告和交流。信用卡年轻人群,是消费金融的主流人群,针对他们的数据分析和洞察让我们信贷业务决策更科学。数据分析和洞察报告背景为什么会做这样的报告?我们调研主流金融机构,发现共同的诉求:...

2017-06-14 15:12:34

阅读数:5630

评论数:0

如何对业务场景做数据分析?

企业的数据分析是个很复杂的工程,需要业务和分析技术两块知识。这里从业务的角度切入,谈谈如何对业务分析,文章参考帆软软件的零售业数据管理方案。首先,企业的分析主要分为管理分析和经营业务分析,分析整体的思路是:明确业务场景——确定分析目标——构建分析体系——梳理核心指标。因为每个企业/行业的业务不同,...

2017-05-31 09:37:07

阅读数:1381

评论数:3

数据如何成为企业未来的商业资产?

文 | 韩海庭           本文出自:未央网电影《点球成金》中美国职业棒球联盟比赛刚有起色的奥克兰勇士队便迎来了球队主力被挖走、资金不足的情况,危急之时球队经理借助数学建模对球员进行分析和重新编组,最终使这支烂队获得20局联胜……事实上2014年世界杯期间德国队与SAP Match Ins...

2017-05-23 10:00:12

阅读数:853

评论数:0

数据分析的5层解读,报表仍是有效的落地实践!

文 | 船长本文出自:知乎专栏《帆软数据应用研究院》——数据干货&资讯集中地浙江天正电气股份有限公司(下文简称浙江天正),是中国工业电器行业规模最大的企业之一,是中国低压电器行业的领军企业。旗下有四处电气工业园:温州、嘉兴、上海、南京,低压电器行业业务以配电与工业控制为主。2017年4月份...

2017-05-17 14:17:17

阅读数:813

评论数:0

FineReport连接多维数据库示例及操作

FineReport连接多维数据库,首先要通过数据连接将多维数据库与FineReport连接起来,然后在数据连接的基础上新建多维数据库XMLA数据集,用于模板设计。

2017-05-15 14:52:38

阅读数:1416

评论数:0

敏捷BI与数据驱动机制

大数据这件事,整体上还是说的多一些,做的稍微少一点。大数据可以是荒凉高原上波澜壮阔的机房,也可以润物细无声般融入到日常生活和工作。换句话说,大数据应该是一种文化。在个人层面,很多人对数字和计算并不敏感,通过经验进行判断很容易出现偏差,因为所知所感与真实世界之间有很大差别。数据驱动的首要条件是要针对...

2017-05-11 10:56:03

阅读数:2320

评论数:1

Gartner2017年BI研究计划曝光,来看看他研究的都是啥?

文 | 水手哥本文出自:知乎专栏《帆软数据应用研究院》——数据干货&资讯集中地 近日,Gartner发布了《Analytics and Business Intelligence Modernization Primer for 2017》报告,详细阐释了Gartner2017年BI和数据...

2017-05-04 09:25:33

阅读数:548

评论数:0

关于BI商业智能的“8大问”|一文读懂大数据BI

这里不再阐述商业智能的概念了,关于BI,就从过往的了解,搜索以及知乎的一些问答,大家困惑的点主要集中于大数据与BI的关系,BI的一些技术问题,以及BI行业和个人职业前景的发展。这里归纳成8个问题点,每个问题都做了精心的解答,希望能给大家带来帮助。问题1:商业智能BI和大数据是什么关系,如何选择?B...

2017-05-02 11:28:17

阅读数:1004

评论数:0

为什么做的报表领导不满意,如何提升报表的价值?

为什么做的报表领导不满意,如何提升报表的价值?文 | jiago王fr文章来源:知乎专栏《撩撩数据吧》——数据干货&资讯集中地你有没有过这样一种感觉,费尽心血做了一堆的报表,但是感觉没什么用,被其他部门同事问起来,还有那么一丝不好意思在心头。因此,想推动数据分析的项目,心中就满是纠结和犹豫...

2017-04-25 09:56:26

阅读数:826

评论数:0

年薪50万的大数据分析师养成记

以下是一位在数据分析领域打滚了N年后的分析师写下的一些总结和体会大家可以借鉴学习! 一、成为数据分析师有哪些要求?1、理论知识要宽泛,涉及数学、市场和技术。要求及对数据敏感,包括统计知识、市场研究、模型原理等。2、常规分析工具的使用,包括数据库、数据挖掘、统计分析工具,常用办公软件(Excel、P...

2017-04-20 10:37:21

阅读数:12088

评论数:0

新零售不简单,当初马云自己都没解释清楚!

文 | 帆软数据应用研究院水手哥本文出自:知乎专栏《帆软数据应用研究院》——数据干货&资讯集中地 什么是新零售?在2016年10月的阿里云栖大会上,马云在演讲中第一次提出了“新零售”概念,“新零售”立时炙手可热,引发街谈巷议。但是“新零售”只停留在望文生义的阶段,并没有谁能够给出准确的定义...

2017-04-18 10:40:29

阅读数:1291

评论数:1

数据化管理在餐饮业中的应用

一、为什么要重视数据化运营和管理?“从经营到管理,管理方向需要数据灯塔”餐饮市场和社会各业具有相似之处,也有很明确的本质不同。1、首先,餐饮市场不像电信、石油市场是垄断性的,餐饮市场充分透明,符合经济上所说的充分竞争市场的特点。如果想要了解竞争对手,可以通过多种方法获取相关信息,这里很多数据和资料...

2017-04-17 14:30:25

阅读数:625

评论数:0

一文读懂商业智能(BI):企业数据分析的中枢

商业智能(BI)大家可能早已耳熟能详。从早期的报表自动化,到现在的复杂灵活分析,多平台支持,优秀的人机互动,多数据抽取,大数据整合,甚至和当下最火的人工智能都有结合点。可能一提到BI,大家都会自然而然地把这个话题丢给IT。但是由IT主导的BI项目最终是否能够落地?为什么以技术为主导的IT部门做不好...

2017-04-14 10:03:52

阅读数:677

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭