自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Leo的博客

资深IT人士吐血打造IT专业博客,贡献给广大网民最干货的企业信息化建设方案和工具的分析、点评

  • 博客(1870)
  • 资源 (9)
  • 收藏
  • 关注

原创 零基础入门数据可视化大屏开发!超全超强大屏模板素材请收好!

在这篇文章中,我们深入探讨了可视化大屏的开发流程以及各种可视化组件在大屏中的作用。作为企业数据展示和决策支持的重要工具,可视化大屏具有不可忽视的价值和潜力。在众多的可视化大屏开发工具中,帆软FineVis可视化大屏开发工具凭借其强大的功能和用户友好的界面,受到了广大开发者和企业用户的喜爱和信赖。FineVis提供了丰富的可视化组件和模板,支持多种数据源的接入和灵活的数据处理方式,帮助用户轻松实现复杂的数据展示和分析需求。

2024-04-11 16:59:57 2262

原创 40份炫酷可视化大屏模板,一个代码都不敲,半天学不会来找我

俗话说,字不如图,图不如动,想要直观地表达数据潜在的价值,并且还同时具有炫酷的效果,毫无疑问只有可视化大屏了。说到大屏,你可能第一时间就想到是这样的:我印象中大概是从2015年开始,可视化大屏突然就成了BI项目中很火的需求了,其实在此之前,像DashBoard、驾驶舱、仪表板的概念就非常流行了正是因为现在企业的信息化发展速度加快,对可视化的要求越来越高,硬件、软件技术都更加成熟了,企业内部就开始流行可视化大屏了,至今已经成为诸多老板最喜欢的展示方式。说起大屏的工具,除了像阿里之外,市场上也有很

2021-09-08 14:20:23 24978 306

原创 用8小时,找到了200张可视化大屏模板,你可以直接用

2020年了,还有人不会可视化大屏?我以前不止一次给各位看过可视化大屏,无论是什么做的,最终的意义都是要让数据展现的更直白、美观、有科技感一点!或许,你以前是用Excel做可视化大屏 或者,你以前是用vue.js等前端工具做可视化大屏 又或者,你用的是echarts、Python等专业的工具 再或者,专业的可视化工具FineReport和FineBI也是你的最爱我想了想,并不是所有人都会代码,而且这东西制作起来也有难度,那如何0代码做出来呢?我花了近8小时,为各位找到了200多张可视化大

2020-08-07 10:44:41 11845 634

原创 知乎人均985?Python爬50W数据,BI做出可视化后,我有了答案

一次完整的python数据分析流程是怎么样的?使用python从网站抓取数据,并将这些数据保存到SQLite数据库中,然后对数据进行清洗,最后对数据进行数据可视化分析。可是熟悉的人应该知道,python爬取简单,但是分析起来是很困难的,SQL语句、Pandas和Matplotlib这些十分繁琐,一般人也不会。于是我想到了用一种更简单的方式进行数据分析,那就是python爬取+BI分析。...

2019-12-19 09:44:33 47442 64

原创 一文讲清工厂管理3大关键环节,库存、生产、设备全覆盖!

文章摘要:本文深入分析了工厂管理中的三大关键问题:库存积压、产量下滑和设备效率低下。通过详细的数据分析,文章揭示了库存周转慢、产线效率低和设备维护差是导致这些问题的根本原因。文章提出了具体的分析思路和方法,包括库存水平评估、产量目标对比和设备综合效率(OEE)分析,并基于分析结果给出了针对性的业务决策建议,如库存调控、产能优化和设备维护策略改进。最后,文章强调了数据驱动决策的重要性,建议通过搭建管理看板、锁定关键指标和动态调整策略来优化工厂管理,实现成本控制和效率提升。

2025-05-19 19:39:46 320

原创 需求总变?质量不稳定?10年采购主管教你解决采购管理4大难题!

文章摘要:本文通过一个制造业企业的采购管理案例,探讨了如何通过数据分析优化采购流程。案例中,企业面临需求预测不准确、供应商管理不善、采购周期长和成本分析不全面等问题。分析思路包括数据提取、关注关键指标、针对性分析和问题跟踪。具体步骤涉及数据准备、创建数据集、可视化分析和建立数据看板。通过建立科学的评估体系和可视化的数据看板,企业能够提升采购效率,降低成本,并增强市场响应能力。未来,引入智能采购管理系统将进一步推动供应链的数字化转型和价值提升。

2025-05-19 19:33:09 707

原创 公司账上的钱是怎么没的?手把手教你写成本分析报告!

成本分析是企业财务管理中的关键环节,旨在通过详细审查各项费用,帮助企业优化资源分配、提高运营效率并支持决策制定。成本分析报告通常包括整体费用、销售费用、管理费用、研发费用和财务费用等模块,通过比较分析、比率分析和因素分析等方法,揭示费用变化的趋势和原因。报告不仅展示数据,还需深入探究异常变化的原因,并提出具体的改进建议。例如,通过分析销售费用的变化,企业可以调整市场策略,减少不必要的支出。成本分析的核心价值在于使每一分钱的支出透明化,确保每个决策都有据可依,从而帮助企业实现更高的盈利能力和市场竞争力。

2025-05-19 19:20:07 511

原创 7大数据可视化工具全方位测评盘点新鲜出炉!哪款才是最优解?

如今,数据可视化工具早已不再是简单的图表展示工具,而是企业透视市场脉络、加速决策流转的核心引擎。不同的数据可视化工具各有优缺点,适用于不同的场景。在选择数据可视化工具时,需要根据自己的需求、预算、技术能力等因素进行综合考虑。

2025-05-19 19:06:38 634

原创 数据可视化热力图怎么做?一文讲清制作具体流程!

制作数据可视化热力图需要我们明确目标、收集整理数据、选择合适的工具、精心制作并正确解读和应用。通过掌握热力图的制作流程,我们可以更好地利用数据,发现数据中的价值,为决策提供有力的支持。

2025-05-19 18:53:44 451

原创 供应链管理不是拍脑袋,需求预测准不准,3大环节很关键!

供应链需求分析的本质,是通过数据将“不确定性”转化为“可量化、可执行”的决策依据。从总览看板的全局监控,到快速交付的环节拆解,再到客户满意的专项优化与高效运营的深度洞察,每一层分析都在推动供应链从成本中心向价值中心的升级。在数字化转型加速的今天,企业需要建立标准化、可视化的需求分析体系,将供应链数据洞察真正嵌入日常运营。

2025-05-16 15:32:14 591

原创 为什么你的成本核算越算越乱?用对BOM表才懂多香!

BOM表不仅是成本核算的工具,更是企业精细化管理的战略关键。通过建立“设计-生产-财务”联动的BOM管理体系,企业能够大大压缩成本核算误差率,同时实现库存周转率提升。对财务人而言,BOM表的价值远超数据本身——它能穿透业务逻辑,优化资源配置,改进生产工艺,推动降本增效。当BOM数据精准到每一颗螺丝钉,企业的每一分利润都将清晰可见。

2025-05-16 15:27:43 779

原创 别再把时间花在生产计划上了!BOM才是产品管理的关键

BOM的管理水平直接决定企业的运营效率与成本控制能力。在智能制造时代,BOM已经从静态的物料清单进化为动态的数据治理。掌握BOM管理的企业,不仅能打通研发、生产、供应链的“数据孤岛”,更能在成本、效率和个性化需求之间找到最优解。未来,随着人工智能与区块链技术的深度应用,BOM将进一步向智能化、自动化演进,驱动供应链实时协同。

2025-05-16 15:21:53 872

原创 应收账款分析不会做?六大看板直接套用!附模板

应收账款管理的核心在于“风险前置化”与“分析精细化”。通过多维度的数据分析、精准的客户分层、严格的流程管控,企业不仅能有效降低坏账风险,更能优化资金使用效率,实现风险与收益的动态平衡。数据是决策的基石,流程是执行的保障,而持续优化的管理机制才能实现从被动应对到主动防控的转型。将文中方法论融入日常管理,将信用评估、账龄分级、客户画像等环节嵌入业务流程,定期复盘迭代,才能真正让应收账款从经营负担转化为竞争优势。

2025-05-16 15:15:47 705

原创 一文读懂:数据湖/数据中台/数据资产……十大数据领域常见概念

从微观的用户行为追踪到宏观的经济模式变革,数据的概念和应用贯穿始终。从埋点到数据湖,最终到数字经济,形成了数据从产生到价值变现的完整链条。这不仅是技术生态还原,更是数据从原始状态到资本化的价值跃迁路径。然而,当前最大的断层在于:多数企业只完成了前几个环节的数据基建,却没有打通价值转化的“最后一公里”。未来,数据要素市场化将释放更大的经济价值,数据的价值链将贯穿从采集、存储、处理到应用的全过程。

2025-05-16 15:03:31 879

原创 产销协同怎么做?一文说透5大核心指标+6大步骤

产销协同是制造企业提升运营效率、减少库存积压和缩短交付周期的关键策略。文章首先探讨了产销协同的重要性,指出其通过数据打通生产、销售和供应链全链路,帮助企业从被动应对转向主动调控。接着,文章详细介绍了产销协同的五大核心指标,包括需求与计划、生产执行、供应链协同、库存管理和客户导向类,并提供了实操步骤,从确定需求、数据准备到看板设计和维护更新。最后,文章提出了基于订单漏斗模型、产销存协同分析(PSI)和成品库存数据的执行策略,强调产销协同应是一个发现问题、定位原因并制定策略的过程,旨在构建快速响应市场的敏捷体系

2025-05-15 21:09:49 603

原创 库存管理怎么做?一文详解库存优化的4个方法!

文章探讨了库存管理中的常见痛点及优化策略。主要痛点包括库存积压与短缺并存、资金占用高、响应市场变化慢和数据驱动能力弱。针对这些问题,文章提出了库存优化的分析思路和步骤,包括品类分析、补货建议、物料划分和库存策略的匹配。此外,文章还强调了技术赋能、组织协同和持续迭代在优化库存管理中的重要性。最终,文章指出库存优化的目标是通过数据找到库存成本与效率的最优解,使库存成为流动的利润,而非成本负担。

2025-05-15 21:03:12 932

原创 从入门到精通,Excel高手做对了什么?

文章探讨了Excel精通的真正含义及其在职场中的应用。首先,文章指出Excel精通不仅仅是掌握函数和图表,而是能够快速识别业务需求、以最低成本实现需求,并预判数据流转中的风险点。接着,文章揭示了Excel进阶的真相,强调函数学习并非越多越好,真正的效率提升在于表外技巧,而精通的尽头是克制,即知道何时停止使用Excel。文章还列出了Excel精通的六大核心能力,包括基础操作、函数公式、数据透视表、可视化、自动化和业务建模。

2025-05-15 20:55:46 607

原创 盘点10大最实用的数据库,实测好用!解决你95%的业务需求!

数据库选型需要综合考虑性能、成本、生态与政策合规性,回归业务本质。金融级强一致性需求可以关注OceanBase、TDSQL等分布式数据库;高并发场景下PolarDB、Redis的性能优势显著;而国产化、非结构化数据处理等特殊场景则需结合GaussDB、Milvus等垂直领域方案。随着AI与云原生技术的深度融合,未来数据库将更趋智能化与场景化。企业应该根据自身业务需求和发展战略,选择最适合的数据库,助力数字化转型的成功。

2025-05-15 20:43:00 931

原创 33页PDF | 企业数据资产化白皮书 :一次搞懂数据资产化及入表路径!(附下载)

在当今数字化时代,。然而,如何将数据转化为资产并进行有效的管理和运营,是众多企业面临的挑战。近年来,国家出台了一系列政策,为企业数据资产化及入表提供了指引和支持。据统计,超过 70% 的企业认为数据资产化对企业发展至关重要,但仅有不到 30% 的企业真正实现了数据资产的有效管理和入表。那么,企业如何顺应政策趋势,实现数据资产的价值最大化呢?接下来,我们将深入探讨企业数据资产化及入表的相关内容。

2025-05-15 14:00:00 617

原创 低代码开发平台排名新鲜出炉!一文告诉你低代码开发平台哪个最好!

这几年,低代码开发平台的浪潮席卷企业数字化转型的每个角落,越来越多的企业试图从中找到降本增效的 “捷径”。根据行业调研,使用低代码平台的企业,应用开发周期平均缩短 60%-80%,人力成本降

2025-05-15 09:53:11 619

原创 25页PDF | 一文看懂华为数字化转型与数据管理实践之路!(附下载)

在当今数字化浪潮席卷全球的时代,。据相关数据显示,到 2021 年,真正启动数字化转型的企业将从 34% 提升超过 90%,然而,仍有 62% 的 CEO 对转型进度和效果不满意。那么,企业如何才能成功实现数字化转型呢?华为的数字化转型实践或许能为我们提供宝贵的经验和启示。

2025-05-14 14:00:00 640

原创 六大可视化数据平台深度测评:一文教你精准选型!

头部企业加大对可视化数据平台的投入,主要因为直观的数据呈现能提升企业对市场趋势的把握和决策响应速度。选择合适的产品需关注三大核心要素:可视化能力、数据处理能力、定制与扩展性。根据Gartner报告,全球企业在此领域的年均投入增长率为25%,但65%的企业IT负责人认为现有平台难以满足复杂业务需求。

2025-05-14 12:41:30 994

原创 3D 数据可视化系统是什么?具体应用在哪方面?

3D数据可视化系统通过将数据以三维空间形式展示,结合计算机图形学、图像处理和数据分析等技术,将抽象数据转化为具有真实感和立体感的三维图形或场景,帮助用户更直观地理解数据。其核心要素包括数据采集与整合、数据建模、可视化呈现和交互设计。该系统在城市规划与管理、工业制造、医疗和金融等领域具有广泛应用,能够提升决策效率、优化流程并增强沟通效果。例如,在城市规划中,3D模型可模拟不同方案;在医疗领域,3D重建有助于提高诊断准确性。3D数据可视化系统正成为各行业挖掘数据价值、优化运营的重要工具。

2025-05-14 11:30:42 1114

原创 基于地图的数据可视化:解锁地理数据的真正价值

基于地图的数据可视化是一种强大的数据探索和分析工具,具有广泛的应用前景。它能够将地理数据以直观、生动的方式呈现出来,帮助我们更好地理解和利用数据。虽然面临着一些挑战,但随着技术的不断发展和创新,基于地图的数据可视化将不断完善和发展,为各行业的决策和发展提供更有力的支持。

2025-05-14 11:21:25 1269

原创 可视化数据图表怎么做?如何实现三维数据可视化?

可视化数据图表和三维数据可视化是将数据转化为有价值信息的重要手段。通过掌握可视化数据图表的制作方法和三维数据可视化的实现途径,我们可以更好地挖掘数据的潜力,为各行业的发展提供有力的支持。

2025-05-14 11:13:54 1428

原创 数据开发是什么?数据开发工具有哪些?

数据开发是通过技术手段对数据进行采集、存储、处理、分析和可视化的过程,旨在将原始数据转化为有价值的信息,支持企业决策。数据开发的主要环节包括数据采集、存储、处理、分析和可视化,每个环节都至关重要。常见的数据开发工具包括编程语言类工具(如Python、Java、SQL)、数据存储与管理工具(如MySQL、MongoDB、Hadoop)以及数据可视化工具(如FineBI、Tableau、PowerBI)。

2025-05-14 11:06:30 708

原创 一文讲清数据同步:企业数据管理的关键环节

数据同步是确保不同数据源之间数据一致性的关键过程,涉及实时、定时和增量同步等多种类型。它在企业数据管理中扮演着重要角色,能够保证数据一致性、提高数据可用性、促进业务协同,并支持数据分析和决策。数据同步可以通过基于数据库的同步、ETL工具、消息队列和文件同步工具等方式实现。然而,数据同步也面临数据冲突、网络延迟、数据安全和性能问题等挑战。通过制定冲突解决策略、优化网络、加强数据安全措施和优化同步算法,可以有效应对这些挑战。

2025-05-13 20:24:20 754

原创 一文讲清数据传输工具和大数据同步工具的区别和联系!

数据传输工具和大数据同步工具在数据管理中各有其独特的功能和应用场景。数据传输工具主要用于小规模数据的移动,强调数据的准确性和完整性,适用于文件共享、数据备份等简单场景。而大数据同步工具则专注于处理大规模数据的实时同步,确保数据的一致性和实时性,适用于大数据分析、数据仓库建设等复杂场景。两者在技术基础上有重叠,且在实际应用中相互补充。选择合适的工具需考虑数据规模、实时性要求、数据一致性需求和应用场景。理解两者的区别和联系,有助于企业根据实际需求做出更合适的选择,提升数据处理效率和质量。

2025-05-13 20:18:13 577

原创 数据工具:数据同步工具、数据血缘工具全解析

在企业数字化转型中,数据同步工具和数据血缘工具是提升数据管理效率和质量的关键技术。数据同步工具主要用于确保不同数据源之间的一致性,通过实时、定时或增量同步技术,支持数据备份、多系统整合和数据迁移等场景。数据血缘工具则记录和展示数据在整个生命周期中的流动和转换过程,帮助企业在数据质量管理、合规性管理和数据治理中发挥作用。

2025-05-13 20:05:32 948

原创 数据服务包括哪些内容?一文讲清数据服务模块的主要功能!

数据服务是企业数字化转型中的关键环节,涵盖数据采集、存储、处理、分析和共享等功能。数据采集模块从多种数据源收集数据,数据存储模块根据数据类型和规模选择合适的存储方式,数据处理模块进行数据清洗、转换和整合,数据分析模块运用多种技术深入挖掘数据价值,数据共享模块则确保数据在安全可控的前提下被高效利用。要做好数据服务,企业需明确数据服务目标,建立专业的数据服务团队,加强数据质量管理,并注重数据安全和隐私保护。通过这些措施,企业能够更好地利用数据驱动决策,提升业务效率和竞争力。

2025-05-13 19:53:55 824

原创 一文拆解数据服务平台:数据服务平台究竟发挥什么作用?

数据服务平台是一种集成化系统,旨在整合、管理和处理企业内外的各种数据源,通过统一的接口和标准为用户提供数据服务。它由数据源层、数据采集层、数据处理层、数据存储层、数据服务层和用户界面层组成,能够有效提高数据质量和一致性,促进数据共享和流通,支持数据分析和决策,并降低数据管理成本。常见的平台包括FineBI、Tableau和QlikView,它们各自具备强大的数据处理、分析和可视化功能,帮助企业高效利用数据资源,提升决策效率和竞争力。

2025-05-13 16:33:36 768

原创 25页PDF | 企业级指标体系设计 :从困境剖析到设计、应用、管理的全流程指南

1.指标标准体系建设:公司应制定指标标准内容的模板,清晰梳理业务属性、技术属性和管理属性。严格规范公司级框架的指标分类,确保指标体系的一致性和规范性。2.设计原则遵循:指标设计要以业务为核心,考虑加工逻辑和业务实质逻辑,评估衍生指标的合理性。搭建指标体系要有重点,以问题为导向,根据公司层级、部门层级和基层层级的不同需求,灵活处理指标分类。同时,要考虑数据的基础和落地性,确保指标体系与业务最贴切,而不是追求大而全。

2025-05-13 14:30:00 1480

原创 实时数据集成是什么意思?一文搞清实时数据集成搭建流程!

实时数据集成是一种在数据产生瞬间,将来自不同数据源的数据进行收集、整合、转换,并及时传输到目标系统或应用中的技术。它打破了传统数据集成在时间上的延迟,确保数据的及时性和一致性。实时数据集成的构建流程包括需求分析、数据源识别与评估、数据清洗与转换、集成架构设计、系统开发与测试、部署与监控。通过实施实时数据集成,企业可以显著提升运营效率、供应链响应速度,并优化决策流程。

2025-05-12 20:55:55 899

原创 AI数据分析为什么这么火?一文讲清AI数据分析的发展趋势

AI数据分析在现代企业中扮演着关键角色,它通过提升决策的科学性、提高运营效率、增强企业竞争力和推动创新发展,为企业带来显著价值。核心技术包括机器学习、深度学习、自然语言处理和数据挖掘,这些技术使得AI能够在多个应用场景中发挥作用,如金融风险评估、医疗诊断、零售商品推荐等。未来,AI数据分析将与物联网深度融合,拓展至更多领域,并更加重视数据安全和隐私保护。AI数据分析的进步不仅优化了业务流程,还推动了企业的创新和竞争优势,预示着其将在未来的技术发展中占据更加重要的地位。

2025-05-12 20:48:34 996

原创 AI数据分析软件什么最好用?一文测评六大AI数据分析软件!

在人工智能重塑商业格局的当下,AI 数据分析软件早已超越传统报表工具的范畴,成为企业洞察市场先机、驱动战略决策的智慧中枢。破解数据价值困局不能盲目跟风技术潮流,而是要围绕企业数字化成熟度,通过业务需求适配、智能技术深度、资源投入效益的三维评估体系,精准锚定契合自身发展的分析利器。

2025-05-12 20:32:43 639

原创 为什么要进行数据分析?数据分析方法包括哪些?

数据分析能深入挖掘消费者行为数据,发现商品间潜在关联。基于分析结果优化商品陈列与营销策略,可有效提升销售效果。在数据驱动的商业环境下,企业通过科学的数据分析方法,能够更好地理解市场与消费者需求,制定更合理的经营策略,从而实现业务的持续增长。

2025-05-12 13:33:20 649

原创 商业智能是什么?一文讲清商业智能的具体应用!

商业智能作为一种强大的工具和方法,能够帮助企业从海量的数据中提取有价值的信息,能为企业的决策提供支持。通过了解商业智能的概念、常见工具和具体应用方面,企业可以根据自身的需求和实际情况,选择合适的商业智能解决方案。

2025-05-12 12:48:24 800

原创 热力图是什么?三分钟学会热力图数据分析怎么做!

热力图作为一种强大的可视化工具,能够帮助我们直观地展示数据的分布和变化情况,发现数据中的模式和趋势。通过了解热力图的要点、选择合适的分析工具以及掌握正确的分析方法,更好地利用热力图进行数据分析,为企业的决策提供有力支持。

2025-05-09 15:21:04 946

原创 什么是数据分析?一文拆解商业数据分析全流程!

数据的重要性 数据是数据分析的基石,没有高质量的数据,一切分析都将成为无源之水。企业在日常运营过程中会产生大量的数据,这些数据涵盖了业务的各个方面,如销售数据、客户数据、生产数据等。准确、完整的数据能够真实地反映企业的运营状况,为分析提供可靠的依据。数据的来源与类型 数据来源广泛,包括企业内部的业务系统、数据库,以及外部的公开数据源、第三方数据提供商等。数据类型也多种多样,主要分为结构化数据和非结构化数据。结构化数据通常以表格形式存在,具有明确的字段和格式,如数据库中的客户信息表、销售订单表等;

2025-05-09 15:15:07 969

原创 数据分析怎么做?高效的数据分析方法有哪些?

数据分析是一个复杂而又系统的过程,通过明确分析的对象和目的,遵循科学的分析步骤,运用合适的数据分析方法,从海量数据中挖掘出有价值的信息,为企业的决策和发展提。

2025-05-09 15:07:55 999

零售业数据化经营(BI)解决方案.pdf

零售业数据化运营解决方案

2021-09-29

银行行业BI解决方案.pdf

本文基于银行行业背景及数据应用背景,提出一站式商业智能(BI)与数据分析平台与解决方案。整体解决方案通过对业务场景和物理场景的双重梳理,为企业管理服务实现赋能。

2019-09-11

医疗行业BI解决方案.pdf

本文基于医疗行业背景及数据应用背景,提出一站式商业智能(BI)与数据分析平台与解决方案。整体解决方案通过对业务场景和物理场景的双重梳理,为企业管理服务实现赋能。

2019-09-11

物流行业BI解决方案.pdf

本文基于物流行业背景及数据应用背景,提出一站式商业智能(BI)与数据分析平台与解决方案。整体解决方案通过对业务场景和物理场景的双重梳理,为企业管理服务实现赋能。

2019-09-11

能源化工行业BI解决方案.pdf

本文基于能源化工行业背景及数据应用背景,提出一站式商业智能(BI)与数据分析平台与解决方案。整体解决方案通过对业务场景和物理场景的双重梳理,为企业管理服务实现赋能。

2019-09-11

建筑行业BI解决方案.pdf

本文基于建筑行业背景及数据应用背景,提出一站式商业智能(BI)与数据分析平台与解决方案。整体解决方案通过对业务场景和物理场景的双重梳理,为企业管理服务实现赋能。

2019-09-11

电力行业BI解决方案.pdf

本文基于电力行业背景及数据应用背景,提出一站式商业智能(BI)与数据分析平台与解决方案。整体解决方案通过对业务场景和物理场景的双重梳理,为企业管理服务实现赋能。

2019-09-11

阿米巴+BI解决方案.pdf

本文针对各行业现状,分析了新型企业经营模式——阿米巴经营理念,提出将大数据应用于阿米巴经营理念相结合的经营模式,帮助企业完成数字化转型。

2019-09-11

BI数据人才与数据文化.pdf

本文针对各企业现有的数据应用困境,提出一站式数据分析和数字化转型方案,帮助企业全方位塑造数据价值,摆脱数据应用困境。

2019-09-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除