题目:
15.3-6假定你希望兑换外汇,你意识到与其直接兑换,不如进行多种外币的一系列兑换,最后兑换到你想要的那种外币,可能会获得更大收益。假定你可以交易n种不同的货币,编号为1,2.....n,兑换从1号货币开始,最终兑换为n号货币。对每两种货币i和j给定汇率rij,意味着你如果有d个单位的货币i,可以兑换dr0个单位的货币j.进行一系列的交易需要支付一定的佣金,金额取决于交易次数。令ck表示k次交易需要支付的佣金。证明:如果对所有k=1,2...n,ck=0,那么寻找最优兑换序列的问题具有最优子结构性质。然后请证明:如果佣金ck为任意值,那么问题不一定具有最优子结构性质。
题目虽然没有要求写出算法,但我也给出算法。
//15.3-6多次兑换货币换取最大收益,本次使用的方法是带备忘的递归
#include <iostream>
using namespace std;
#define n 4
struct Currency_Exchange
{
double **r;//储存汇率
int *s;//储存外汇最佳方式的变量
Currency_Exchange()
{
r=new double *[n];
for (int i=0;i<n;i++)
{
r[i]=new double[n];
}
s=new int [n];
}
};
struct Best_Currency_Exchange
{
static double Max;//最大收益
static double Min;//最小收益
int *t;
static int end;
Best_Currency_Exchange()
{
t=new int[n];
}
};
double Best_Currency_Exchange::Max=-0x7fffffff;
double Best_

探讨了在不同手续费条件下,通过多种货币兑换获取最大收益的优化问题。当手续费为0时,问题具有最优子结构;反之,若手续费任意,则问题的最优子结构特性不再成立。动态规划在此类问题中可能显得计算过剩,但在实际外汇兑换中,由于汇率的波动,仍有一定的应用价值。
最低0.47元/天 解锁文章
2万+





