动态规划之投资策略规划

本文探讨了在已知未来投资回报的情况下,如何通过动态规划找到10年内的最优投资策略。证明了存在最优策略是每年将所有资金投入单一投资,并展示了问题的最优子结构。算法的时间复杂度为O(n*m*m),但当投资金额受限时,最优子结构性质不再成立,需要考虑多元投资。

         你所掌握的算法知识帮助你从Acme计算机公司获得了一份令人兴奋的工作,签约奖金1万美元。你决定利用这笔钱进行投资,目标是10年后获得最大回报。你决定请Amalgamated投资公司管理你的投资,该公司的投资回报规则如下。该公司提供n种不同的投资,从1~n编号。在第j年年底,比你会得到drij美元。回报率是有保证的,即未来10年每种投资的回报率均已知。你每年只能做出一次投资决定。在每年年底,你既可以将钱继续投入到上一年选择的投资种类中,也可以转移到其他投资中(转移到已有的投资种类,或者新的投资种类)。如果跨年时你不做投资转移,需要支付f1美元的费用,否则,需要支付f2美元的费用,其中f2>f1。

a。如上所述,本问题允许你每年将钱投入到多种投资中。证明:存在最优投资策略,每年都将所有钱投入到单一投资中(脊柱最优投资策略只需最大化10年的回报,无需关心任何其他目标,如最小化风险)。

b.证明:规划最优投资策略问题具有最优子结构性质。

c.设计最优投资策略规划算法,分析算法时间复杂度。

d. 假定Amalgamated投资公司在上述规则上又加入了新的限制条款,在任何时刻你都不能在任何单一投资种类中投入15000美元以上。证明:最大化10年回报问题不再具有最优子结构性质。

分析与解答:正如a题所言,如果每年都将所有钱投入到单一投资中,存在最优投资策略。一共n年m种投资,每年都有m种方式选择,持续n年,那么一共有m^n种可能的选择方式,但是这指数种选择方式中存在很多重叠子结构,实际上除去重叠的,只有n*m²种子结构。该问题在第j年寻找获得收益最大时所选择的位置将会产生新的子问题,要想求第j年最佳选择,那么需要求第j-1年最佳选择,根据第j-1年最优解来求第j年最优解。假定已经知道第j-1年之前的最佳选择方式,第j-1年

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值