动态规划——投资问题

1.问题
数学语言:有n个项目,m元钱,dp(x,y)表示第x个项目投资y元钱的效益,问如何投资使效益最大。
2.解析
维护一个二维数组dp[i][j],表示前i个项目投资j元钱的最大利益,从第一个项目开始考虑,到第n个项目,为n分配x元钱,m-x元钱的最大效益为dp[n-1][m-x]。
在这里插入图片描述
(实验成果,也是样例。)
3.设计

for (i<项目数) {
	for (j <总金额) {
		for (k<j) {
			if (dp[i][j] < a[i][k] + dp[i - 1][j - k]) {
				更新dp[i][j] ;
                记录更新位置;
			}
		}
	}
}

4.分析(k,n是项目数,x,m是金额)
n m
∑ ∑(x+1)=1/2 (n-1)m(m+3)
K=2 x=1
n m
∑ ∑(x)=1/2 (n-1)m(m+1)
K=2 x=1
W(n,m)=O(nm^2)
5.源码

#include<map>
#include<stdlib.h>
#include<iostream>
#include<vector>
#include<string>
#include<algorithm>
#include<cstring>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
using namespace std;
const int maxn = 2e3 + 10;
#define ll long long
int i, j, k;
int n, m, q;
const int inf = 0x3f3f3f3f;
const int mod = 1e9+7;
map<int, int>mp;
int a[maxn][maxn], dp[maxn][maxn], f[maxn][maxn];
int g[maxn];
int main() {
	while (cin >> n >> m) {
		for (i = 1; i <= n; i++) {
			a[i][0] = 0;
			f[i][0] = 0;
			for (j = 1; j <= m; j++)
				scanf("%d", &a[i][j]);
		}
		for (i = 1; i <= n; i++) {
			for (j = 0; j <= m; j++) {
				dp[i][j] = 0;
				for (int k = 0; k <= j; k++) {
					if (dp[i][j] < a[i][k] + dp[i - 1][j - k]) {
						dp[i][j] = a[i][k] + dp[i - 1][j - k];
						f[i][j] = k;
					}
				}
			}
		}
		int temp = m;
		for (i = n; i > 0; --i) {
			g[i] = f[i][temp];
			temp -= g[i];
		}
		for (i = 1; i <= n; i++)
			cout << "The " << i << "th" << " project invest:" << g[i] << endl;
		printf("%d\n", dp[n][m]);
	}
	return 0;
}
/*
4 5
11 12 13 14 15
0 5 10 15 20
2 10 30 32 40
20 21 22 23 24
*/

Github:
https://github.com/myycjw/investproblem
代码解读及食用方法:
已放在源代码注释内

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值