1.问题
数学语言:有n个项目,m元钱,dp(x,y)表示第x个项目投资y元钱的效益,问如何投资使效益最大。
2.解析
维护一个二维数组dp[i][j],表示前i个项目投资j元钱的最大利益,从第一个项目开始考虑,到第n个项目,为n分配x元钱,m-x元钱的最大效益为dp[n-1][m-x]。
(实验成果,也是样例。)
3.设计
for (i<项目数) {
for (j <总金额) {
for (k<j) {
if (dp[i][j] < a[i][k] + dp[i - 1][j - k]) {
更新dp[i][j] ;
记录更新位置;
}
}
}
}
4.分析(k,n是项目数,x,m是金额)
n m
∑ ∑(x+1)=1/2 (n-1)m(m+3)
K=2 x=1
n m
∑ ∑(x)=1/2 (n-1)m(m+1)
K=2 x=1
W(n,m)=O(nm^2)
5.源码
#include<map>
#include<stdlib.h>
#include<iostream>
#include<vector>
#include<string>
#include<algorithm>
#include<cstring>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
using namespace std;
const int maxn = 2e3 + 10;
#define ll long long
int i, j, k;
int n, m, q;
const int inf = 0x3f3f3f3f;
const int mod = 1e9+7;
map<int, int>mp;
int a[maxn][maxn], dp[maxn][maxn], f[maxn][maxn];
int g[maxn];
int main() {
while (cin >> n >> m) {
for (i = 1; i <= n; i++) {
a[i][0] = 0;
f[i][0] = 0;
for (j = 1; j <= m; j++)
scanf("%d", &a[i][j]);
}
for (i = 1; i <= n; i++) {
for (j = 0; j <= m; j++) {
dp[i][j] = 0;
for (int k = 0; k <= j; k++) {
if (dp[i][j] < a[i][k] + dp[i - 1][j - k]) {
dp[i][j] = a[i][k] + dp[i - 1][j - k];
f[i][j] = k;
}
}
}
}
int temp = m;
for (i = n; i > 0; --i) {
g[i] = f[i][temp];
temp -= g[i];
}
for (i = 1; i <= n; i++)
cout << "The " << i << "th" << " project invest:" << g[i] << endl;
printf("%d\n", dp[n][m]);
}
return 0;
}
/*
4 5
11 12 13 14 15
0 5 10 15 20
2 10 30 32 40
20 21 22 23 24
*/
Github:
https://github.com/myycjw/investproblem
代码解读及食用方法:
已放在源代码注释内