关闭

【097】Nginx实现一台服务器,两个域名发布不同的前端项目,并且两个域名都用80端口。

有时候你可能需要在一个服务器上,用 nginx 发布两个前端项目。并且这两个前端项目使用不同的域名,域名都绑定80端口。本文说明此场景下的操作过程。Nginx使用的是 Docker 官方镜像。假设 yoursite.com 是你的网站域名。 admin.yoursite.com 是你的管理系统的域名。 你的网站前端代码发布地址是: /home/your/path/projects/dist。...
阅读(33) 评论(0)

【096】Linux CentOS 7.3 允许或禁止root用户远程登录

转自 http://blog.csdn.net/yasi_xi/article/details/470390811)vi /etc/ssh/sshd_config,将PermitRootLogin的值改成yes,并保存PermitRootLogin yes 2)service sshd restart 这样,就能用root直接ssh登录了如果在1)中,将PermitRootLogin的值设成no...
阅读(59) 评论(0)

【095】深度学习读书笔记:P30证明行列式等于方阵特征值的乘积

建议读者先阅读这篇文章:【092】韦达定理在一元n次方程中的推广 搞明白什么是韦达定理。行列式和特征值之间是有着特殊关系的。这种关系就是:行列式等于方阵特征值的乘积。本文给出了证明。...
阅读(17) 评论(0)

【094】A是n阶方阵,k是常数,可以证明|kA|等于k的n次方乘以|A|

as...
阅读(108) 评论(0)

【092】韦达定理在一元n次方程中的推广

本文主要是把一元二次方程的韦达定理推广到一元n次方程上。证明过程使用了数学归纳法。...
阅读(154) 评论(0)

【091】Linux打包压缩文件夹和解压文件

假设your_folder是文件夹,打包并压缩文件夹tar -zcvf your_folder.tar.gz your_folder/把多个文件夹打包并压缩到同一个压缩文件中。假设当前路径下有多个目录,命名类似 a_20170901、a_20170902 等等。tar -zcvf a_201709.tar.gz a_201709*/如何解压文件:tar zxvf your_folder.tar.gz...
阅读(77) 评论(0)

【093】深度学习读书笔记:P29证明矩阵特征值的和等于矩阵的迹

方法一: 利用韦达定理证明建议读者先阅读这篇文章:【092】韦达定理在一元n次方程中的推广 搞明白什么是韦达定理。按照特征值的定义: A =λλ - A = (λI-A) = 其中 I 表示单位矩阵。按照特征值的定义, 不能是零向量。按照克莱姆法则,若|λI-A|≠0,则 必然是零向量。所以|λI-A|=0。不妨设 ,显然 即 = 0求特征值,可以把 λ 看做未知数,行列式可以化作...
阅读(70) 评论(0)

【090】深度学习读书笔记:P30证明对角方阵的行列式等于方阵对角元素的乘积

求证:对角方阵的行列式等于方阵对角元素的乘积证明: 不妨设A是n阶对角方阵。n是正整数,并且n大于等于2 。A 的行列式是 |A|。 令 aij表示方阵 A 中的第 i 行,第 j 列的元素。显然,令 Aij 表示元素 aij 的代数余子式。 题目可以描述成求证 |A| = a11a22···ann 存在两种情况。1. A的对角线元素至少有一个为0 。2. A的对角线元素全都不为0 。第...
阅读(103) 评论(0)

【089】深度学习读书笔记:P29证明迹Tr(AB)=Tr(BA)

已知m行n列矩阵A,n行m列矩阵B。Tr表示迹运算。求证 Tr(AB)=Tr(BA) 。...
阅读(203) 评论(0)

【088】深度学习读书笔记:P29证明迹运算描述Frobenius范数

已知矩阵A,求证 。证明:设A是 m 行 n 列的矩阵。A 的行向量是。那么:因为迹运算返回的是矩阵对角线元素的和,所以:是矩阵 A 第 i 行的行向量。 是矩阵 A 第 i 行行向量的內积。那么:根据Frobenius 范数的定义:...
阅读(87) 评论(0)

【087】深度学习读书笔记:P28奇异值分解的证明

一、推论部分 为了更好的写出我们的证明过程,我们需要提炼出一些推论。 推论1:对于任意一个m行n列的矩阵A,AAT是对称矩阵,并且ATA也是对称矩阵。 证明: 因为 (AAT)T = (AT)T AT = AAT,所以 AAT是对称方阵。 因为 (ATA)T = AT(AT)T = ATA, 所以 ATA 是对称方阵。 推论2:已知m行n列矩阵A 和 n行m列矩阵B,m阶方阵 AB...
阅读(57) 评论(0)

【086】部署nodejs程序时,如何把自己用到的npm模块封装成Docker镜像,方便在离线的时候使用?

在本文开头,说一下碰到的使用场景。编写好nodejs程序后,就要封装成Docker镜像。在编译Dockerfile的时候,系统会从npm的模块仓库中下载用到的模块。这会碰到两个问题: 第一,大多数情况下,我们更新程序,只是改了源代码,没有修改package.json中的模块配置。每次编译镜像的时候都要从网络上下载模块浪费时间。 第二,生产环境与外网隔离;或者网络环境不稳定。...
阅读(163) 评论(0)

【085】深度学习读书笔记:P27正定矩阵的两种定义

推论1、2、3 讨论了我对向量由向量组线性表示、线性方程组和n维空间这三个概念之间的思考与理解。 本文中,推论2和推论3都是由推论1,按照从特殊到一般的思路证明出来的。 推论4讨论的是本文主题,正定矩阵的两种定义。直接应用了推论1....
阅读(68) 评论(0)

【084】深度学习读书笔记:P26正交矩阵

本文讨论了正交矩阵的一些特点。存在一些和正交矩阵相关的命题。本文理清了这些命题的等价关系。...
阅读(351) 评论(0)

【083】深度学习读书笔记:P26特征分解的证明

《深度学习》第26页给出了特征分解的公式,本文补上了公式的证明过程。...
阅读(476) 评论(0)
97条 共7页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:146345次
    • 积分:2264
    • 等级:
    • 排名:第18379名
    • 原创:70篇
    • 转载:21篇
    • 译文:6篇
    • 评论:16条
    文章分类
    最新评论
    友情链接