TensorFlow
文章平均质量分 70
zhangchao19890805
这个作者很懒,什么都没留下…
展开
-
【099】TensorFlow使用Docker方式安装
首先,拉取 TensorFlow的Docker镜像:docker pull tensorflow/tensorflow创建TensorFlow的容器,并且要启用8888端口:docker run –name tf01 -p 6006:6006 -p 8888:8888 -d tensorflow/tensorflow确保你的服务器的 8888 端口可以在外部访问。假设你的服务器的IP是 192.16原创 2017-12-16 14:55:17 · 2185 阅读 · 1 评论 -
【121】Tensorflow合成特征和截取离群值
开发环境没有开发环境的读者,推荐你看这篇文章: https://blog.csdn.net/zhangchao19890805/article/details/78781003python 版本用的是2数据源用了一个CSV文件,文件名是 california_housing_train.csv 。我把这个文件从放到了这个地址:没有积分的读者请给我留言,我给你单独发。...原创 2018-08-06 13:46:33 · 913 阅读 · 3 评论 -
【120】TensorFlow 从CSV文件中读取数据并训练线性回归模型(面向新手)
在您阅读本文之前: 开发环境参照 https://blog.csdn.net/zhangchao19890805/article/details/78781003正文开始。学习 TensorFlow 让我的思维发生了变化。计算机本质上是一种数学的工具,而我在学习编程的时候,思维也不可避免地收到了影响。传统的编程思想,常常认为程序就应该像数学定理或者数学函数一样,给出一个确定的结果。这...原创 2018-08-02 18:21:41 · 16243 阅读 · 6 评论 -
【123】TensorFlow 多个特征值线性回归,并且使用训练集、验证集和测试集的例子
我使用加利福尼亚州房价数据来作例子。训练集和验证集用到的CSV文件在这里:https://download.csdn.net/download/zhangchao19890805/10584496测试集用到的CSV文件在这里: https://download.csdn.net/download/zhangchao19890805/10631336我们的目标是构建数学模型来预测房价。通常...原创 2018-09-08 03:02:45 · 6880 阅读 · 2 评论 -
【122】TensorFlow检查地图数据
在对数据集进行训练之前,需要先验证数据集。下面以美国加利福尼亚州房价相关数据,作为演示。原创 2018-09-03 15:22:05 · 581 阅读 · 0 评论 -
【126】TensorFlow 使用皮尔逊相关系数找出和标签相关性最大的特征值
在实际应用的时候,我们往往会收集多个维度的特征值。然而这些特征值未必都能派上用场。有些特征值可能和标签没有什么太大关系,而另外一些特征值可能和标签有很大的相关性。相关性不大的特征值对于训练模型没有太大用处,还会影响性能。因此,最佳方式是找到相关性最大的几个特征值来训练模型。那么,如何才能找到相关性最大的几个特征值呢?...原创 2018-10-13 17:38:39 · 10268 阅读 · 3 评论 -
【127】TensorFlow对特征值分箱并使用独热编码
我使用加利福尼亚州房价数据来作例子。训练集和验证集用到的CSV文件在这里:https://download.csdn.net/download/zhangchao19890805/10584496测试集用到的CSV文件在这里:https://download.csdn.net/download/zhangchao19890805/10631336在实际应用的时候,许多特征值和标签之间不是线性...原创 2018-10-15 22:12:41 · 3037 阅读 · 0 评论 -
【135】TensorFlow利用神经网络学习XOR(异或)并部署成java代码
本文python代码使用 python 3。本文参考了《深度学习》第107页,6.1 实例:学习XORXOR 函数也称为异或。输入两个布尔型的变量 x1 和 x2 。当 x1 和 x2 不相同的时候,返回True。当 x1 和 x2 相同的时候返回 False。为了方便计算机处理,我用 1 表示True,0 表示False。我创建一个CSV文件XOR_train.csv,里面内容就是异或的...原创 2019-04-13 22:25:05 · 560 阅读 · 0 评论