数学
zhangchao19890805
这个作者很懒,什么都没留下…
展开
-
【144】用极限证明0.999...=1
因为公式太多,就用了图片。先证明了推论1,再证明本题。原创 2020-04-20 03:18:34 · 873 阅读 · 0 评论 -
【135】TensorFlow利用神经网络学习XOR(异或)并部署成java代码
本文python代码使用 python 3。本文参考了《深度学习》第107页,6.1 实例:学习XORXOR 函数也称为异或。输入两个布尔型的变量 x1 和 x2 。当 x1 和 x2 不相同的时候,返回True。当 x1 和 x2 相同的时候返回 False。为了方便计算机处理,我用 1 表示True,0 表示False。我创建一个CSV文件XOR_train.csv,里面内容就是异或的...原创 2019-04-13 22:25:05 · 560 阅读 · 0 评论 -
【121】Tensorflow合成特征和截取离群值
开发环境没有开发环境的读者,推荐你看这篇文章: https://blog.csdn.net/zhangchao19890805/article/details/78781003python 版本用的是2数据源用了一个CSV文件,文件名是 california_housing_train.csv 。我把这个文件从放到了这个地址:没有积分的读者请给我留言,我给你单独发。...原创 2018-08-06 13:46:33 · 913 阅读 · 3 评论 -
【100】深度学习读书笔记:P44函数性质的证明
前提知识log x 表示 x 的自然对数。也有人写成 ln x ,或者 log e x。exp (x) 表示 ex 。 我们需要先了解一下基本初等函数的导数公式:公式一:常数的导数是零。 公式二:若 y = xn,y’=nxn-1。 公式三: (sin x)’ = cos x 公式四:(cos x)’ = -sin x 公式五: (ax)’ = ax log a 公式六: (ex)’原创 2017-12-17 20:40:37 · 639 阅读 · 0 评论 -
【095】深度学习读书笔记:P30证明行列式等于方阵特征值的乘积
建议读者先阅读这篇文章:【092】韦达定理在一元n次方程中的推广 搞明白什么是韦达定理。行列式和特征值之间是有着特殊关系的。这种关系就是:行列式等于方阵特征值的乘积。本文给出了证明。原创 2017-11-12 23:35:23 · 14083 阅读 · 2 评论 -
【094】A是n阶方阵,k是常数,可以证明|kA|等于k的n次方乘以|A|
as原创 2017-10-16 08:50:58 · 5923 阅读 · 0 评论 -
【093】深度学习读书笔记:P29证明矩阵特征值的和等于矩阵的迹
方法一: 利用韦达定理证明建议读者先阅读这篇文章:【092】韦达定理在一元n次方程中的推广 搞明白什么是韦达定理。按照特征值的定义: A =λλ - A = (λI-A) = 其中 I 表示单位矩阵。按照特征值的定义, 不能是零向量。按照克莱姆法则,若|λI-A|≠0,则 必然是零向量。所以|λI-A|=0。不妨设 ,显然 即 = 0求特征值,可以把 λ 看做未知数,行列式可以化作原创 2017-10-09 23:38:02 · 11727 阅读 · 0 评论 -
【092】韦达定理在一元n次方程中的推广
本文主要是把一元二次方程的韦达定理推广到一元n次方程上。证明过程使用了数学归纳法。原创 2017-10-14 22:56:03 · 48874 阅读 · 4 评论 -
【089】深度学习读书笔记:P29证明迹Tr(AB)=Tr(BA)
已知m行n列矩阵A,n行m列矩阵B。Tr表示迹运算。求证 Tr(AB)=Tr(BA) 。原创 2017-10-05 09:15:43 · 10741 阅读 · 1 评论 -
【088】深度学习读书笔记:P29证明迹运算描述Frobenius范数
已知矩阵A,求证 。证明:设A是 m 行 n 列的矩阵。A 的行向量是。那么:因为迹运算返回的是矩阵对角线元素的和,所以:是矩阵 A 第 i 行的行向量。 是矩阵 A 第 i 行行向量的內积。那么:根据Frobenius 范数的定义:原创 2017-10-04 10:56:10 · 2669 阅读 · 0 评论 -
【087】深度学习读书笔记:P28奇异值分解的证明
一、推论部分为了更好的写出我们的证明过程,我们需要提炼出一些推论。推论1:对于任意一个m行n列的矩阵A,AAT是对称矩阵,并且ATA也是对称矩阵。证明: 因为 (AAT)T = (AT)T AT = AAT,所以 AAT是对称方阵。 因为 (ATA)T = AT(AT)T = ATA, 所以 ATA 是对称方阵。推论2:已知m行n列矩阵A 和 n行m列矩阵B,m阶方阵 AB原创 2017-09-28 22:55:57 · 305 阅读 · 0 评论 -
【084】深度学习读书笔记:P26正交矩阵
本文讨论了正交矩阵的一些特点。存在一些和正交矩阵相关的命题。本文理清了这些命题的等价关系。原创 2017-09-13 06:04:11 · 837 阅读 · 0 评论 -
【090】深度学习读书笔记:P30证明对角方阵的行列式等于方阵对角元素的乘积
求证:对角方阵的行列式等于方阵对角元素的乘积证明: 不妨设A是n阶对角方阵。n是正整数,并且n大于等于2 。A 的行列式是 |A|。 令 aij表示方阵 A 中的第 i 行,第 j 列的元素。显然,令 Aij 表示元素 aij 的代数余子式。 题目可以描述成求证 |A| = a11a22···ann 存在两种情况。1. A的对角线元素至少有一个为0 。2. A的对角线元素全都不为0 。第原创 2017-10-06 16:29:04 · 5242 阅读 · 0 评论 -
【082】深度学习读书笔记:P24奇异方阵的两种定义
读《深度学习》这本书,在第24页提到了一个定义:“一个列向量线性相关的方阵被称为奇异的”。我身边还有一本任明荣、张洪谦主编的《线性代数》。这本书里奇异方阵的定义是:“设 A 为 n 阶方阵,当|A|=0时,称A为奇异方阵(退化方阵)”。其实这两种奇异方阵是等价的。也就是说,对于一个n阶方阵A,|A|=0 等价于 A是一个列向量线性相关的方阵。可以证明这种等价关系。原创 2017-09-03 16:12:52 · 998 阅读 · 0 评论 -
【085】深度学习读书笔记:P27正定矩阵的两种定义
推论1、2、3 讨论了我对向量由向量组线性表示、线性方程组和n维空间这三个概念之间的思考与理解。本文中,推论2和推论3都是由推论1,按照从特殊到一般的思路证明出来的。推论4讨论的是本文主题,正定矩阵的两种定义。直接应用了推论1.原创 2017-09-24 19:13:05 · 467 阅读 · 0 评论 -
【083】深度学习读书笔记:P26特征分解的证明
《深度学习》第26页给出了特征分解的公式,本文补上了公式的证明过程。原创 2017-09-08 04:37:19 · 1088 阅读 · 0 评论