# 图像处理－线性滤波－2 图像微分（1、2阶导数和拉普拉斯算子）

1271人阅读 评论(0)

## 1 一阶导数

，前向差分 forward differencing                  （1.2）

，中心差分 central differencing                     （1.3）

1）前向差分的Matlab实现

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 function dimg = mipforwarddiff(img,direction) % MIPFORWARDDIFF     Finite difference calculations  % %   DIMG = MIPFORWARDDIFF(IMG,DIRECTION) % %  Calculates the forward-difference for a given direction %  IMG       : input image %  DIRECTION : 'dx' or'dy' %  DIMG      : resultant image % %   See also MIPCENTRALDIFF MIPBACKWARDDIFF MIPSECONDDERIV %   MIPSECONDPARTIALDERIV   %   Omer Demirkaya, Musa Asyali, Prasana Shaoo, ... 9/1/06 %   Medical Image Processing Toolbox   imgPad = padarray(img,[1 1],'symmetric','both');%将原图像的边界扩展 [row,col] = size(imgPad); dimg = zeros(row,col); switch (direction)   case 'dx',    dimg(:,1:col-1) = imgPad(:,2:col)-imgPad(:,1:col-1);%x方向差分计算， case 'dy',    dimg(1:row-1,:) = imgPad(2:row,:)-imgPad(1:row-1,:);  otherwise, disp('Direction is unknown'); end; dimg = dimg(2:end-1,2:end-1);

2）中心差分的Matlab实现

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 function dimg = mipcentraldiff(img,direction) % MIPCENTRALDIFF     Finite difference calculations  % %   DIMG = MIPCENTRALDIFF(IMG,DIRECTION) % %  Calculates the central-difference for a given direction %  IMG       : input image %  DIRECTION : 'dx' or'dy' %  DIMG      : resultant image % %   See also MIPFORWARDDIFF MIPBACKWARDDIFF MIPSECONDDERIV %   MIPSECONDPARTIALDERIV   %   Omer Demirkaya, Musa Asyali, Prasana Shaoo, ... 9/1/06 %   Medical Image Processing Toolbox   img = padarray(img,[1 1],'symmetric','both'); [row,col] = size(img); dimg = zeros(row,col); switch (direction)     case 'dx',         dimg(:,2:col-1) = (img(:,3:col)-img(:,1:col-2))/2;     case 'dy',         dimg(2:row-1,:) = (img(3:row,:)-img(1:row-2,:))/2;     otherwise,         disp('Direction is unknown'); end dimg = dimg(2:end-1,2:end-1);
 1 

 1 2 I = imread('coins.png'); figure; imshow(I); Id = mipforwarddiff(I,'dx'); figure, imshow(Id);

原图像                                                   x方向1阶导数

## 2 图像梯度（Image Gradient）

Matlab函数

1）gradient：梯度计算

2）quiver：以箭头形状绘制梯度。注意放大下面最右侧图可看到箭头，由于这里计算横竖两个方向的梯度，因此箭头方向都是水平或垂直的。

 1 2 3 4 5 I = double(imread('coins.png')); [dx,dy]=gradient(I); magnitudeI=sqrt(dx.^2+dy.^2); figure;imagesc(magnitudeI);colormap(gray);%梯度幅值 holdon;quiver(dx,dy);%叠加梯度方向

梯度幅值                                   梯度幅值+梯度方向

## 3 二阶导数

（3.1）

## 3.1 普拉斯算子（laplacian operator）

### 3.1.2 概念

（3.2）

1）首先，其一阶差分为

2）因此，二阶差分为

3）因此，1维拉普拉斯运算可以通过1维卷积核 实现

（3.4）

### 3.1.2 应用

Matlab里有两个函数

1）del2

2）fspecial：图像处理中一般利用Matlab函数fspecial

h = fspecial('laplacian', alpha) returns a 3-by-3 filter approximating the shape of the two-dimensional Laplacian operator.
The parameter alpha controls the shape of the Laplacian and must be in the range 0.0 to 1.0. The default value for alpha is 0.2.

# 图像处理之一阶微分应用

Theta = tan-1(yGradient/xGradient)

magnitude表示边缘强度信息

theta预言边缘的方向走势。

X, Y梯度效果，及magnitude效果

0
0

【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐（算法+实战）--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：219713次
• 积分：4441
• 等级：
• 排名：第6661名
• 原创：208篇
• 转载：89篇
• 译文：0篇
• 评论：55条
文章分类
评论排行
最新评论