TF-IDF算法-Python实现(附源代码)

一、背景

        

        TF-IDF算法全称 termfrequency–inverse document frequency,是一种用于资讯检索与资讯探勘的常用加权技术。它的算法复杂度并不高,但能很好的满足搜索高相关度文档的需求。由于它的高效性,TF-IDF 模型在搜索引擎等实际应用中被广泛使用。   

        以下是本人使用Python实现该算法的思路,如有不当之处望各位大牛指导一二。


二、TF-IDF算法概述

       

        关于TF-IDF算法的描述网上很多,我就不拾前人牙慧了,感兴趣的筒子们可参考这篇通俗易懂的文章:TF-IDF模型的概率解释。这篇文章中给出了很多数学公式,但数学的美妙在于其每个符号在现实中都是有着极其和谐的对应关系的。在下文中,我将用更通俗的方法阐述下个人的理解。

        对于一篇文档来说,它与关键字 w[i] 的相关度取决于它包含的所有词中该关键词的频率。这其实挺直观的,一篇文档中包含关键词w[i]越多,那么它与关键字w[i]相关度也就越大。但是,如果仅仅取关键词的频数的话,那么比较长的文档包含该关键词的频数很可能远远大于比较短的文档的。因而为了协调文档长度的影响,相关度的衡量应取关键词w[i]占文档总词数的频率。

        那有多个关键词的话该怎样衡量一篇文档出现的情况该怎样衡量文档的综合相关度呢?最简单的当然是把它们都加起来,但这样一来新的问题又出现了。假设某个关键词w[j]出现在很多篇文档里,另一关键词w[k]仅在一小部分文档(记为集合U[i])里出现,那按照常理来说是不是匹配了更多关键词的文档集U[k]与给出的搜索关键词w[k],w[j]相关度更大?鉴于这种情况,我们需要给每一篇文档包含的每一个关键词的相关度加一个权值。《TF-IDF模型的概率解释》这篇文章里给出了该权值的推导过程。依本人的肤浅理解,这个权值为关键词w在所有文档集中所蕴含的信息熵。

        这样TF-IDF算法的模型就出来了:

TF-IDF (q, d) = sum { i = 1..k | TF (w[i], d) *IDF(w[i]) }

      IDF为逆向文档频率:

IDF = log (n / docs (w, D))

        TF表示词条在文档d中出现的频率:

TF (w,d)= count (w, d) / sum { i = 1..n| count (w, d[i]) }


三、算法实现

       

    1、文档预处理

        

        获取了足够多的文档后,需要对文档进行预处理,以加快搜索的速度。=由于linux系统和windows系统的默认编码不同,Python在处理中文文档时可能会出错,所以也需要对不同编码格式的文档预处理成同一编码格式的文档。因而在文档预处理这一模块需要有以下几个步骤:读取文档 -> 删除不需要的字符(如回车符\n、制表符\t、空格等)-> 转换成unicode格式 -> 对文档分词 -> 转换成utf-8格式写入txt文档。

       这些步骤的实现主要使用了以下几个模块

  • 字符串修剪模块str_replace.py 

       这个模块就一个函数,代码如下:

def str_replace(str_source,char,*words):
    str_temp=str_source    
    for word in words:
        str_temp=str_temp.replace(word,char)
    return str_temp

       str_replace(str_source,char,*words)函数接受两个或两个以上的参数,str_source是需要处理的字符串,char是要替换的目标字符,words是可变字符串的元组,对字符串str_source中的每一个出现在words里的字符均替换成统一字符char。

       在主程序里可以这样使用str_replace(content_temp,"","\t","\n",""),即将content_temp里的每一个"\t","\n",""字符都删掉。

  • 字符串格式转换模块StrToUni.py

        这个模块主要有两个函数StrToUni_try和StrToUni。

        由于输入字符串的格式可能没法实现知道,因而需要进行unicode解码的尝试,在解码尝试成功后再进行转码。这一过程分两个步骤,StrToUni_try和StrToUni两个函数分别完成。StrToUni_try函数主要负责判断字符串是不是某一格式,这个函数返回字符串的正确编码格式。StrToUni函数负责使用StrToUni_try返回的编码格式将字符串转化成unicode格式。代码如下:

def StrToUni_try(str,type_1):
    try:
        str.decode(type_1)
    except UnicodeDecodeError:
        return False
    else:
        return True
def StrToUni(str,*type_list):
    if not type_list:
        if StrToUni_try(str,'utf-8'):
            return str.decode('utf-8')
        else:
            print "输入的源文件的编码格式不是utf-8"
    else:
        for type_2 in type_list:
            if StrToUni_try(str,type_2):
                return str.decode(type_2)
            else:
                if type_2==type_list[-1]:
                    print "输入的源文件的编码格式不在您提供的格式列表中"

  • 31
    点赞
  • 190
    收藏
    觉得还不错? 一键收藏
  • 44
    评论
### 回答1: TF-IDF算法是一种常用的文本处理算法,可以用于计算文本中每个单词的重要程度。在Python中,可以使用scikit-learn库来实现TF-IDF算法。为了改进TF-IDF算法的效果,可以考虑以下几点: 1. 去除停用词:停用词是指在文本中频繁出现但没有实际意义的词语,如“的”、“是”等。在TF-IDF算法中,去除停用词可以减少噪声,提高算法的准确性。 2. 调整权重:TF-IDF算法中,词频和逆文档频率的权重默认是相等的,但实际上不同的文本可能需要不同的权重。可以通过调整权重来提高算法的效果。 3. 使用n-gram模型:n-gram模型是指将文本中的词语按照一定的顺序组合成n个词语的模型。使用n-gram模型可以更好地捕捉文本中的语义信息,提高算法的准确性。 4. 使用词根还原:词根还原是指将单词还原为其原始形式,如将“running”还原为“run”。使用词根还原可以减少单词形态的差异,提高算法的准确性。 以上是TF-IDF算法改进的一些方法,可以根据具体情况选择适合自己的方法来实现算法。 ### 回答2: TF-IDF算法是信息检索中常用的一种技术,它能够帮助我们对文本数据进行快速、准确的搜索。它的核心思想是通过计算每个单词在文档集合中出现的频率和逆文档频率,来权衡单词的重要程度,从而得出每份文档的关键词。这样,我们就能用这些关键词来快速地判断一份文档与搜索实例的相关性。 Python作为一种广泛使用的编程语言,在实现TF-IDF算法方面具有一定优势。下面就来介绍一下如何改进Python实现TF-IDF算法。 1. 加载数据 首先,需要将文本数据加载到Python中。常用的方法是使用pandas库中的read_csv函数。 2. 预处理 在计算TF-IDF之前,需要进行一些预处理。首先要将所有文本都转换成小写字母,以避免大小写带来的误差。同时,还需要去除一些停用词,例如“the”、“a”、“an”等等。这些词并不会对文本的相关性产生太大的影响,反而会干扰计算。 3. 分词 将文本进行分词,是TF-IDF算法的一个重要步骤。在Python中,可以使用NLTK(自然语言工具包)来进行分词操作。NLTK提供了许多分词方法,例如最简单的word_tokenize函数。此外,还可以使用正则表达式的方法进行分词,更加灵活。 4. 计算词频 计算每个单词在文档集合中的频率,是TF-IDF算法的第一部分。在Python中,可以使用collections库的Counter函数来计算单词出现的次数。 5. 计算逆文档频率 计算每个单词的逆文档频率,是TF-IDF算法的第二部分。在Python中,可以使用math库的log函数来计算自然对数。然后,将所有文档中的单词频率除以单词的逆文档频率,即可得到TF-IDF值。 6. 排序 对计算出的TF-IDF值进行排序,并筛选出一定数量的关键词。在Python中,可以使用pandas库的sort_values函数进行排序。此外,也可以使用Python自带的sorted函数,更加灵活。 总之,TF-IDF算法Python中的实现,需要依次进行数据加载、预处理、分词、计算词频、计算逆文档频率、排序等一系列步骤。通过适当的改进,可以使这些步骤更加高效、精确。这样,就能够为我们提供更加可靠、快速的检索服务。 ### 回答3: tf-idf算法是一种常用的文本挖掘算法,用于计算文档中每个词语的重要性,它基于两个统计量:词频(term frequency)和逆文档频率(inverse document frequency)。在实际应用中,tf-idf算法往往需要与其他算法一起使用,以提高算法的准确性和效率。 为了改进tf-idf算法python实现,我们可以从以下几个方面入手: 1. 数据预处理:在使用tf-idf算法之前,需要对文本数据进行预处理,包括分词、去停用词、词干提取等。可以使用已有的分词库,如jieba分词库,来对文本进行分词,并使用NLTK库来对文本进行预处理。 2. 选择合适的权重计算方法:如果使用普通的TF-IDF算法,容易忽略一些重要的词语。因此,我们可以使用改进的TF-IDF算法,如Okapi BM25、Full-tF、Bidirectional TF-IDF、Sensitive TF-IDF等,来计算每个词语的权重。 3. 使用稀疏矩阵压缩数据:当文本数据量非常大时,使用稀疏矩阵压缩数据可以减少内存占用,提高算法的运行效率。可以使用Python的SciPy库来实现稀疏矩阵。 4. 优化算法实现tf-idf算法实现可以使用多线程技术,以提高算法的运行速度。可以使用Python的线程库,如threading和multiprocessing,来实现多线程计算。 总之,改进tf-idf算法python实现可以通过优化数据预处理、选择合适的权重计算方法、使用稀疏矩阵压缩数据和优化算法实现这几个方面来实现。这些改进可以提高算法的准确性和效率,使得tf-idf算法更加适用于实际应用场景。
评论 44
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值