基于python实现TF-IDF算法

标签:2021.09.27工作内容
参考资料:TF-IDF算法介绍及实现
声明:本文中大量内容转载至参考资料,仅归纳整理和加入部分个人观点心得,侵删

概念

  1. 定义
    TF-IDF(term frequency-inverse document frequency)是一种用于信息检索与数据挖掘的常用加权技术,常用于挖掘文章中的关键词。
  2. 特点:简单高效,用于最开始的文本数据清洗。
  3. TF-IDF
    (1)TF:词频
    可以统计到停用词,并把它们过滤,避免对结果造成影响。
    e.g.:“的”、“了”、“是”等等
    (2)IDF:逆文档频率
    在词的频率相同时,不同词的重要性却不同。IDF会给常见的词较小的权重。
    e.g.:假设“量化”和“系统”的词频相同,则重要性:“量化” > “系统”
  4. 实现方法
    当有TF和IDF后,将其相乘,能够得到一个词的TF-IDF的值。某个词在文章中的TF-IDF越大,那么它在文章中的重要性越高。

算法步骤

  1. 计算词频
    词频 = 某个词在文章中出现的次数 / 文章的总次数
  2. 计算逆文档的频率
    需要一个语料库(corpus)来模拟语言的使用环境。
    逆文档频率 = log(语料库的文档总数 / (包含该词的文档数 + 1))
  3. 计算TF-IDF
    TF-IDF= TF × IDF
    与一个词在文档中出现的次数成正比。
    与该词在整个语言中出现的次数成反比。

优缺点

  1. 优点
    简单高效,容易理解。
  2. 缺点
    (1)词频衡量此的重要性不够全面,有时重要的词出现得不多
    (2)无法体现位置信息=>无法体现该词在上下文中的重要性=>用word2vec算法来支持

python实现TF-IDF算法

  1. 自己构建语料库
    这个例子比较特殊,dataset既是语料库,可是我们要统计核心词的对象。
# -*- coding: utf-8 -*-
from collections import defaultdict
import math
import operator

"""
函数说明:创建数据样本
Returns:
    dataset - 实验样本切分的词条
    classVec - 类别标签向量
"""


def loadDataSet():
    dataset = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],  # 切分的词条
               ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
               ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'my'],
               ['stop', 'posting'
基于Python实现TF-IDF(Term Frequency-Inverse Document Frequency)算法来处理多篇文档通常涉及以下几个步骤: 1. **预处理**: - 文本清洗:去除标点、数字和停用词,只保留有意义的单词。 - 分词:将文本切分成词语列表。 2. **词频统计** (Term Frequency, TF): - 对每篇文档,计算每个词的频率,即该词出现的次数除以总词数。 3. **文档频率(Documents Frequency, DF)**: - 计算每个多篇文档中某个词出现过的文档数量。 - 使用`min_df`参数来设置最低的文档频率阈值,低于这个阈值的词会被忽略。 4. **逆文档频率(Inverse Document Frequency, IDF)`: - 对所有词,计算IDF = log(文档总数 / 词的DF + 1),这会降低常见词的重要性。 5. **TF-IDF值计算**: -TFIDF相乘,得到每个词对每篇文档的TF-IDF值。 6. **向量化**: - 将整个文档集转换成词项矩阵,每一行代表一篇文档,列则是词汇表中的单词及其对应的TF-IDF值。 7. **应用到相似度分析**: - 可以通过计算文档间的TF-IDF值之和(如余弦相似度),来评估文档之间的相似性。 下面是一个简单的示例代码片段,使用`sklearn`库中的`TfidfVectorizer`来完成上述流程: ```python from sklearn.feature_extraction.text import TfidfVectorizer # 假设docs是一个包含多篇文章的列表 docs = ['文档1内容', '文档2内容', '文档3内容'] vectorizer = TfidfVectorizer() tfidf_matrix = vectorizer.fit_transform(docs) # 现在tfidf_matrix就是一个文档-词项矩阵 ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值