标签:2021.09.27工作内容
参考资料:TF-IDF算法介绍及实现
声明:本文中大量内容转载至参考资料,仅归纳整理和加入部分个人观点心得,侵删
概念
- 定义
TF-IDF(term frequency-inverse document frequency)是一种用于信息检索与数据挖掘的常用加权技术,常用于挖掘文章中的关键词。 - 特点:简单高效,用于最开始的文本数据清洗。
- TF-IDF
(1)TF:词频
可以统计到停用词,并把它们过滤,避免对结果造成影响。
e.g.:“的”、“了”、“是”等等
(2)IDF:逆文档频率
在词的频率相同时,不同词的重要性却不同。IDF会给常见的词较小的权重。
e.g.:假设“量化”和“系统”的词频相同,则重要性:“量化” > “系统” - 实现方法
当有TF和IDF后,将其相乘,能够得到一个词的TF-IDF的值。某个词在文章中的TF-IDF越大,那么它在文章中的重要性越高。
算法步骤
- 计算词频
词频 = 某个词在文章中出现的次数 / 文章的总次数 - 计算逆文档的频率
需要一个语料库(corpus)来模拟语言的使用环境。
逆文档频率 = log(语料库的文档总数 / (包含该词的文档数 + 1)) - 计算TF-IDF
TF-IDF= TF × IDF
与一个词在文档中出现的次数成正比。
与该词在整个语言中出现的次数成反比。
优缺点
- 优点
简单高效,容易理解。 - 缺点
(1)词频衡量此的重要性不够全面,有时重要的词出现得不多
(2)无法体现位置信息=>无法体现该词在上下文中的重要性=>用word2vec算法来支持
python实现TF-IDF算法
- 自己构建语料库
这个例子比较特殊,dataset既是语料库,可是我们要统计核心词的对象。
# -*- coding: utf-8 -*-
from collections import defaultdict
import math
import operator
"""
函数说明:创建数据样本
Returns:
dataset - 实验样本切分的词条
classVec - 类别标签向量
"""
def loadDataSet():
dataset = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], # 切分的词条
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'my'],
['stop', 'posting'