独立任务最优调度问题

转自:http://hi.baidu.com/liongg/blog/item/63d6a9ec19454c2262d09f01.html(有修改)


问题:独立任务最优调度,又称双机调度问题:用两台处理机A和B处理n个作业。设第i个作业交给机器A处理时所需要的时间是a[i],若由机器B来处理,则所需要的时间是b[i]。现在要求每个作业只能由一台机器处理,每台机器都不能同时处理两个作业。设计一个动态规划算法,使得这两台机器处理完这n个作业的时间最短(从任何一台机器开工到最后一台机器停工的总的时间)。
研究一个实例:
n=6
a = {2, 5, 7, 10, 5, 2};
b = {3, 8, 4, 11, 3, 4}.


分析:当完成k个作业,设机器A花费了x时间,机器B所花费时间的最小值肯定是x的一个函数,设F[k][x]表示机器B所花费时间的最小值(注意,这是B机器所花费的时间,即当B机器停机时的时间点)。则有

F[k][x]=Min{ F[k-1][x]+b[k], F[k-1][x-a[k]] };

其中,F[k-1][x]+b[k]表示第k个作业由机器B来处理(完成k-1个作业时机器A花费的时间仍是x,前提就是A机器停机的时间是x),F[k-1][x-a[k]]表示第k个作业由机器A处理(完成k-1个作业时机器A花费的时间是x-a[k])。


那么x(表示A机器的停机时间)、F[k][x](表示B机器的停机时间)两者取最晚停机的时间,也就是两者中最大的时间,是在AB在此时间中完成k任务最终的时间:Max(x, F[k][x])。而机器A花费的时间x在此期间是一个变量,其取值可以是即x=0,1,2……x(max),(理论上x的取值是离散的,但为编程方便,设为整数连续的)由此构成了点对较大值序列。要求整体时间最短,取这些点对较大值序列中最小的即是。


理解难点在于B是A的函数表达式,也即动态规划所在。花点时间,看懂表达式,加上思考,理解了这点一切OK,后面的编程实现完全依据这个思想。先用前两个任务的枚举示例来帮助理解。


示例:前两个作业示例足矣。

初始化第一个作业:下标以0开始。

首先,机器A所花费时间的所有可能值范围:0 <= x <= a[0].
设x<0时,设F[0][x]= ∞,则max(x, ∞)= ∞;记法意义见下。
x=0时,F[0][0]=3,则Max(0,3)=3,机器A花费0时间,机器B花费3时间,而此时两个机器所需时间为3;
x=1时,F[0][1]=3,Max(1,3)=3;
x=2时,F[0][2]=0,则Max(2,0)=2;

那么上面的点对序列中,可以看出当x=2时,完成第一个作业两台机器花费最少的时间为2,此时机器A花费2时间,机器B花费0时间。

来看第二个作业:

首先,x的取值范围是:0 <= x <= (a[0] + a[1]).
当x<0时,记F[1][x] = ∞;这个记法编程使用,因为数组下标不能小于0。在这里的实际含义是:x是代表完成前两个作业机器A的时间,a[1]是机器A完成第2个作业的时间,若x<a[1],则势必第2个作业由机器B来处理,即在Min()中取前者。

x=0,则F[1][0]= Min{ F[0][0]+b[2], F[0][0-a[1]] }= Min{3+8,∞}=11,进而Max(0,11)=11;
x=1,则F[1][1]= Min{ F[0][1]+b[2], F[0][1-a[1]] }= Min{3+8,∞}=11,进而Max(11)=11;
x=2,则F[1][2]= Min{ F[0][2]+b[2], F[0][2-a[1]] }= Min{0+8,∞}=8,进而Max(2,8)=8;
x=3,则F[1][3]= Min{ F[0][3]+b[2], F[0][3-a[1]] }= Min{0+8,∞}=8,进而Max(3,8)=8;
x=4,则F[1][4]= Min{ F[0][4]+b[2], F[0][4-a[1]] }= Min{0+8,∞}=8,进而Max(4,8)=8;
x=5,则F[1][5]= Min{ F[0][5]+b[2], F[0][5-a[1]] }= Min{0+8,3}=3,进而Max(5,3)=5;
x=6,则F[1][6]= Min{ F[0][6]+b[2], F[0][6-a[1]] }= Min{0+8,3}=3,进而Max(6,3)=6;
x=7,则F[1][7]= Min{ F[0][7]+b[2], F[0][7-a[1]] }= Min{0+8,0}=0,进而Max(7,0)=7;

那么上面的点对序列中,可以看出当x=5时,完成两个作业两台机器花费最少的时间为5,此时机器A花费5时间,机器B花费3时间。


程序代码如下:

using System;
namespace zydd
{
    class Program
    {
        //独立任务最优调度函数,参数为两组任务和任务个数,最优时间和顺序结果。
        static void DlrwZydd(int[] a, int[] b, int n, int[] least, string[] result)
        {
            //首先给一个大值。
            for (int i = 0; i < n; i++)
            {
                least[i] = 99;
            }

            //若任务只有一台机器完成,求得两个时间。
            int aSum = 0, bSum = 0;
            for (int i = 0; i < n; i++)
            {
                aSum += a[i];
                bSum += b[i];
            }
            //小值加1作为数组的列数,减少存储空间。
            int Sum = 1 + Math.Min(aSum, bSum);

            //创建四个行数列数相同的数组,timeA存储机器A可能用的时间,timeB存储对应机器B用的时间,
            //timeMax记录两者共需的时间,即较大的那个;who则标识完成该任务的机器是A还是B。
            int[,] timeA = new int[n, Sum];
            int[,] timeB = new int[n, Sum];
            int[,] timeMax = new int[n, Sum];
            char[,] who = new char[n, Sum];
            char[] tempRlt = new char[n];//tempRlt记录机器完成任务的机器顺序,并逐一赋值给result


            //先计算第1个任务相关值,记录在四个数组的第0行。
            for (int i = 0; i <= a[0]; i++)
            {
                timeA[0, i] = i;
                if (i < a[0])
                {
                    timeB[0, i] = b[0];
                    who[0, i] = 'b';
                }
                else
                {
                    timeB[0, i] = 0;
                    who[0, i] = 'a';
                }
                timeMax[0, i] = Math.Max(timeA[0, i], timeB[0, i]);
            }

            //尽管像下面一样,直接比较即可得出完成第1项任务的最优时间,但由于使用动态规划,计算上述值是必需的。
            if (a[0] <= b[0])
            {
                least[0] = a[0];
                tempRlt[0] = 'a';
            }
            else
            {
                least[0] = b[0];
                tempRlt[0] = 'b';
            }
            result[0] = new String(tempRlt);        

            //计算第2个至第n个任务,分别记录在四个数组相应行。
            for (int k = 1; k < n; k++)
            {

                //tempSum记录完成前k项任务机器A最多需要的时间,即全部由A完成需要的时间,亦即机器A所有可能的取值范围。
                int tempSum = 0;
                for (int temp = 0; temp <= k; temp++)
                {
                    tempSum += a[temp];
                }
                //计算出所有可能的点对(timeA,timeB),并取值timeMax。
                for (int i = 0; i <= tempSum; i++)
                {
                    //机器A在完成前k项任务时所花费的时间为i。
                    timeA[k, i] = i;

                    //i即timeA[k, i],若机器A完成前k项任务的时间 小于 它完成第k项的时间,可能吗?不可能,所以第k项任务肯定由机器B做。
                    if (i < a[k])
                    {
                        timeB[k, i] = timeB[k - 1, i] + b[k];
                        who[k, i] = 'b';
                    }
                    //按照前述动态规划方式的思想,确定机器A在花费i时间时,机器B花费的最优时间。
                    else
                    {
                        if ((timeB[k - 1, i] + b[k]) <= timeB[k - 1, i - a[k]])
                        {
                            timeB[k, i] = timeB[k - 1, i] + b[k];
                            who[k, i] = 'b';
                        }
                        else
                        {
                            timeB[k, i] = timeB[k - 1, i - a[k]];
                            who[k, i] = 'a';
                        }
                    }
                    //两台机器花费时间较大的那个为总花费时间。
                    timeMax[k, i] = Math.Max(timeA[k, i], timeB[k, i]);
                }

                //处理数组tempSum后面的值。机器A时间全部设为最大,此时机器B则无需花费时间。
                for (int i = tempSum + 1; i < aSum; i++)
                {
                    timeA[k, i] = tempSum;
                    timeB[k, i] = 0;
                }

                //完成第k项任务后,在timeMax所有可能值中,选取最小值即最优值。
                int flag = 0;//记录最优值所在的位置i值,同时也是机器A所花费的时间。
                for (int i = 0; i <= tempSum; i++)
                {
                    if (timeMax[k, i] > 0 && timeMax[k, i] < least[k])
                    {
                        least[k] = timeMax[k, i];
                        flag = i;
                    }
                }

                //用来回溯所用机器的顺序,需要注意的是机器A所花费的时间和数组的下标一样,因此可用做标记。
                //最后一项任务的回溯路径已在示意图中标出,便于理解。
                tempRlt[k] = who[k, flag];
                for (int i = k; i > 0 && flag > 0; i--)
                {
                    //如果是机器A完成第i项任务,则机器A花费的时间减去a[i]就是完成前i-1项任务的时间。
                    //同时在who中可以确定前一项任务的机器,因为机器A花费的时间可用做位置标记。
                    if (tempRlt[i] == 'a')
                    {
                        flag -= a[i];
                        tempRlt[i - 1] = who[i - 1, flag];

                    }
                    if (tempRlt[i] == 'b')
                    {
                        tempRlt[i - 1] = who[i - 1, flag];
                    }
                }

                result[k] = new String(tempRlt);
            }   
        }

        static void Main(string[] args)
        {
            const int N = 6;
            int[] a = new int[N] { 2, 5, 7, 10, 5, 2 };
            int[] b = new int[N] { 3, 8, 4, 11, 3, 4 };
            int[] least = new int[N];   //记录完成任务的最优时间
            string[] result = new string[N];    //记录完成任务机器的顺序

            DlrwZydd(a, b, N, least, result);
            Console.WriteLine();
            for (int i = 0; i < N; i++)
            {
                Console.WriteLine(" 按要求完成前{0}项任务的机器顺序为:" + result[i] + " 时间为:{1}" ,i+1,least[i]);
            }
        }
    }
}

便于理解的图:





  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
这是一个经典的动态规划问题,可以使用C语言实现。以下是一种可能的解决方案: 1. 定义状态:设f(i,j)表示前i个任务放在j张加密卡上的最小花费。 2. 状态转移方程:考虑第i个任务,它可以独立放在一张加密卡上,也可以与前面的任务一起放在一张加密卡上。因此,有以下两种情况: 1) 第i个任务独立放在一张加密卡上,那么前i-1个任务就需要放在j-1张加密卡上,此时状态转移方程为: f(i, j) = min(f(i-1, j), f(i-1, j-1)) + cost(i) 2) 第i个任务与前面的任务一起放在一张加密卡上,那么前i-1个任务就需要放在j张加密卡上,此时状态转移方程为: f(i, j) = f(i-1, j) + cost(i) 其中,cost(i)表示第i个任务的花费。 3. 边界条件:当i=1时,只需要考虑前1个任务放在1张加密卡上的情况,即f(1,1)=cost(1)。当j=1时,只能将前i个任务都放在1张加密卡上,即f(i,1)=f(i-1,1)+cost(i)。 4. 最终答案:最小花费为min(f(n,1), f(n,2), f(n,3), f(n,4)),其中n为总任务数。 下面是C语言代码实现: ```c #include <stdio.h> #include <stdlib.h> #define MAX_TASKS 100 #define MAX_CARDS 4 int min(int a, int b) { return a < b ? a : b; } int main() { int n, i, j, k, cost[MAX_TASKS + 1], f[MAX_TASKS + 1][MAX_CARDS + 1]; // 读入任务数和每个任务的花费 scanf("%d", &n); for (i = 1; i <= n; i++) { scanf("%d", &cost[i]); } // 初始化边界条件 for (i = 1; i <= n; i++) { f[i][1] = f[i-1][1] + cost[i]; } for (j = 1; j <= MAX_CARDS; j++) { f[1][j] = cost[1]; } // 动态规划求解 for (i = 2; i <= n; i++) { for (j = 2; j <= MAX_CARDS; j++) { f[i][j] = f[i-1][j] + cost[i]; for (k = 1; k < i; k++) { f[i][j] = min(f[i][j], f[k][j-1] + cost[i]); } } } // 输出最小花费 int ans = f[n][1]; for (j = 2; j <= MAX_CARDS; j++) { ans = min(ans, f[n][j]); } printf("%d\n", ans); return 0; } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值