sparkSQL:dataframe

转载 2016年08月31日 16:21:43
DataFrame 的函数
Action 操作
1、 collect() ,返回值是一个数组,返回dataframe集合所有的行
2、 collectAsList() 返回值是一个java类型的数组,返回dataframe集合所有的行
3、 count() 返回一个number类型的,返回dataframe集合的行数
4、 describe(cols: String*) 返回一个通过数学计算的类表值(count, mean, stddev, min, and max),这个可以传多个参数,中间用逗号分隔,如果有字段为空,那么不参与运算,只这对数值类型的字段。例如df.describe("age", "height").show()
5、 first() 返回第一行 ,类型是row类型
6、 head() 返回第一行 ,类型是row类型
7、 head(n:Int)返回n行  ,类型是row 类型
8、 show()返回dataframe集合的值 默认是20行,返回类型是unit
9、 show(n:Int)返回n行,,返回值类型是unit
10、 table(n:Int) 返回n行  ,类型是row 类型
dataframe的基本操作
1、 cache()同步数据的内存
2、 columns 返回一个string类型的数组,返回值是所有列的名字
3、 dtypes返回一个string类型的二维数组,返回值是所有列的名字以及类型
4、 explan()打印执行计划  物理的
5、 explain(n:Boolean) 输入值为 false 或者true ,返回值是unit  默认是false ,如果输入true 将会打印 逻辑的和物理的
6、 isLocal 返回值是Boolean类型,如果允许模式是local返回true 否则返回false
7、 persist(newlevel:StorageLevel) 返回一个dataframe.this.type 输入存储模型类型
8、 printSchema() 打印出字段名称和类型 按照树状结构来打印
9、 registerTempTable(tablename:String) 返回Unit ,将df的对象只放在一张表里面,这个表随着对象的删除而删除了
10、 schema 返回structType 类型,将字段名称和类型按照结构体类型返回
11、 toDF()返回一个新的dataframe类型的
12、 toDF(colnames:String*)将参数中的几个字段返回一个新的dataframe类型的,
13、 unpersist() 返回dataframe.this.type 类型,去除模式中的数据
14、 unpersist(blocking:Boolean)返回dataframe.this.type类型 true 和unpersist是一样的作用false 是去除RDD

集成查询:
1、 agg(expers:column*) 返回dataframe类型 ,同数学计算求值
df.agg(max("age"), avg("salary"))
df.groupBy().agg(max("age"), avg("salary"))
2、 agg(exprs: Map[String, String])  返回dataframe类型 ,同数学计算求值 map类型的
df.agg(Map("age" -> "max", "salary" -> "avg"))
df.groupBy().agg(Map("age" -> "max", "salary" -> "avg"))
3、 agg(aggExpr: (String, String), aggExprs: (String, String)*)  返回dataframe类型 ,同数学计算求值
df.agg(Map("age" -> "max", "salary" -> "avg"))
df.groupBy().agg(Map("age" -> "max", "salary" -> "avg"))
4、 apply(colName: String) 返回column类型,捕获输入进去列的对象
5、 as(alias: String) 返回一个新的dataframe类型,就是原来的一个别名
6、 col(colName: String)  返回column类型,捕获输入进去列的对象
7、 cube(col1: String, cols: String*) 返回一个GroupedData类型,根据某些字段来汇总
8、 distinct 去重 返回一个dataframe类型
9、 drop(col: Column) 删除某列 返回dataframe类型
10、 dropDuplicates(colNames: Array[String]) 删除相同的列 返回一个dataframe
11、 except(other: DataFrame) 返回一个dataframe,返回在当前集合存在的在其他集合不存在的
12、 explode[A, B](inputColumn: String, outputColumn: String)(f: (A) ⇒ TraversableOnce[B])(implicit arg0: scala.reflect.api.JavaUniverse.TypeTag[B]) 返回值是dataframe类型,这个 将一个字段进行更多行的拆分
df.explode("name","names") {name :String=> name.split(" ")}.show();
将name字段根据空格来拆分,拆分的字段放在names里面
13filter(conditionExpr: String): 刷选部分数据,返回dataframe类型 df.filter("age>10").show();  df.filter(df("age")>10).show();   df.where(df("age")>10).show(); 都可以
14、 groupBy(col1: String, cols: String*) 根据某写字段来汇总返回groupedate类型   df.groupBy("age").agg(Map("age" ->"count")).show();df.groupBy("age").avg().show();都可以
15、 intersect(other: DataFrame) 返回一个dataframe,在2个dataframe都存在的元素
16join(right: DataFrame, joinExprs: Column, joinType: String)
一个是关联的dataframe,第二个关联的条件,第三个关联的类型:inner, outer, left_outer, right_outer, leftsemi
df.join(ds,df("name")===ds("name") and  df("age")===ds("age"),"outer").show();
17、 limit(n: Int) 返回dataframe类型  去n 条数据出来
18、 na: DataFrameNaFunctions ,可以调用dataframenafunctions的功能区做过滤 df.na.drop().show(); 删除为空的行
19、 orderBy(sortExprs: Column*) 做alise排序
20select(cols:string*) dataframe 做字段的刷选 df.select($"colA", $"colB" + 1)
21、 selectExpr(exprs: String*) 做字段的刷选 df.selectExpr("name","name as names","upper(name)","age+1").show();
22、 sort(sortExprs: Column*) 排序 df.sort(df("age").desc).show(); 默认是asc
23、 unionAll(other:Dataframe) 合并 df.unionAll(ds).show();
24、 withColumnRenamed(existingName: String, newName: String) 修改列表 df.withColumnRenamed("name","names").show();
25、 withColumn(colName: String, col: Column) 增加一列 df.withColumn("aa",df("name")).show();
举报

相关文章推荐

spark dataframe操作集锦(提取前几行,合并,入库等)

spark dataframe派生于RDD类,但是提供了非常强大的数据操作功能。当然主要对类SQL的支持。 在实际工作中会遇到这样的情况,主要是会进行两个数据集的筛选、合并,重新入库。 ...

sparksql的agg函数,作用:在整体DataFrame不分组聚合

1、 agg(expers:column*) 返回dataframe类型 ,同数学计算求值 df.agg(max("age"), avg("salary")) df.groupBy().agg(ma...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

Spark-SQL之DataFrame操作大全

Spark SQL中的DataFrame类似于一张关系型数据表。在关系型数据库中对单表或进行的查询操作,在DataFrame中都可以通过调用其API接口来实现。可以参考,Scala提供的DataFra...

python连接数据库,tushare,Dataframe to sql

1、使用pip安装lxml,再安装pandas,再安装tushare。 可能出现的问题:     (一).安装lxml的时候可能会出现相关模块无法编译的问题,unable to find vcvar...

Spark DataFrame中的join类型

欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦:www hello 百度 Markdown和扩展Markdown简洁的...

spark DataFrame 的函数|基本操作|集成查询记录

DataFrame 的函数 Action 操作 1、 collect() ,返回值是一个数组,返回dataframe集合所有的行 2、 collectAsList() 返回值是一个Java类型的...

Scala---文件读取、写入、控制台操作

Scala文件读取E盘根目录下scalaIO.txt文件内容如下: //文件读取 val file=Source.fromFile("E:\\scalaIO.txt") for(l...

Spark 官方文档(5)——Spark SQL,DataFrames和Datasets 指南

Spark版本:1.6.2 概览Spark SQL用于处理结构化数据,与Spark RDD API不同,它提供更多关于数据结构信息和计算任务运行信息的接口,Spark SQL内部使用这些额外的信息...

Spark核心类:SQLContext和DataFrame

http://blog.csdn.net/pipisorry/article/details/53320669pyspark.sql.SQLContext[pyspark.sql.SQLContext...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)