HDU 3836 - Equivalent Sets【强连通分量 基础题】

本文介绍了一种使用强连通分量(SCC)算法来解决特定图论问题的方法:即如何确定最少步骤以证明多个集合间的等价性。通过构建图结构并运用SCC算法,可以有效地找出解决问题所需的最小步骤数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

To prove two sets A and B are equivalent, we can first prove A is a subset of B, and then prove B is a subset of A, so finally we got that these two sets are equivalent.
You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.
Now you want to know the minimum steps needed to get the problem proved.
 

Input

The input file contains multiple test cases, in each case, the first line contains two integers N <= 20000 and M <= 50000.
Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.
 

Output

For each case, output a single integer: the minimum steps needed.
 

Sample Input

    
4 0 3 2 1 2 1 3
 

Sample Output

    
4 2

Hint

Case 2: First prove set 2 is a subset of set 1 and then prove set 3 is a subset of set 1. 

特别特别水的强连通分量 关于强连通分量的讲解参考这篇博客,都是很裸的== 敲完刘汝佳书上二档模板就1A了

#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
using namespace std;
#define maxn 20000
vector<int>G[maxn];
int pre[maxn],lowlink[maxn],sccno[maxn],dfs_clock,scc_cnt;
stack<int>S;
int min(int a,int b){if(a<b)return a;return b;}
void dfs(int u)
{
    pre[u]=lowlink[u]=++dfs_clock;
    S.push(u);
    for(int i=0;i<G[u].size();i++)
    {
        int v=G[u][i];
        if(!pre[v])
        {
            dfs(v);
            lowlink[u]=min(lowlink[u],lowlink[v]);
        }
        else if(!sccno[v])
            lowlink[u]=min(lowlink[u],pre[v]);
    }
    if(lowlink[u]==pre[u])
    {
        scc_cnt++;
        for(;;)
        {
            int x=S.top();S.pop();
            sccno[x]=scc_cnt;
            if(x==u) break;
        }
    }
}
void find_scc(int n)
{
    dfs_clock=scc_cnt=0;
    memset(sccno,0,sizeof(sccno));
    memset(pre,0,sizeof(pre));
    for(int i=0;i<n;i++)
    if(!pre[i]) dfs(i);
}
int in0[maxn],out0[maxn];
int main()
{
    int T,n,m;
    while(~scanf("%d%d",&n,&m))
    {
        for(int i=0;i<n;i++) G[i].clear();
        for(int i=0;i<m;i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            u--;v--;
            G[u].push_back(v);
        }
        find_scc(n);
        for(int i=1;i<=scc_cnt;i++)in0[i]=out0[i]=1;
        for(int u=0;u<n;u++)
        {
            for(int i=0;i<G[u].size();i++)
            {
                int v=G[u][i];
                if(sccno[u]!=sccno[v])in0[sccno[v]]=out0[sccno[u]]=0;
            }
        }
        int a=0,b=0;
        for(int i=1;i<=scc_cnt;i++)
        {
            if(in0[i])a++;
            if(out0[i]) b++;
        }
        int ans=a;
        if(ans<b) ans=b;
        if(scc_cnt==1) ans=0;
        printf("%d\n",ans);

    }return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值