Bellman-Ford算法

在一个图里每条边都有一个权值(有正有负)
如果存在一个环(从某个点出发又回到自己的路径),而且这个环上所有权值之和是负数,那这就是一个负权环,也叫负权回路
存在负权回路的图是不能求两点间最短路的,因为只要在负权回路上不断兜圈子,所得的最短路长度可以任意小。

Bellman-Ford算法

  在单源最短路径问题的某些实例中,可能存在权为负的边。如果图G=(VE)不包含从源s可达的负权回路,则对所有v∈V,最短路径的权定义d(s,v)依然正确,即使它是一个负值也是如此。但如果存在一从s可达的负回路,最短路径的权的定义就不能成立。S到该回路上的结点就不存在最短路径。当有向图中出现负权时,则Dijkstra算法失效。当不存在源s可达的负回路时,我们可用Bellman-Ford算法实现。

  下面我们介绍有向图中,存在具有负权的弧时,求最短路的方法。
  为了方便起见,不妨设从任一点vi到任一点vj都有一条弧(如果在Gk ,(vi,vj)不存在,则添加(vi,vj)且令wij=+∝)。

  显然,从vsvj的最短路总是从vs出发,沿着一条路到某个点vi,再沿(vi,vj)vj的(这里vi可以是vs本身),由本章开始时介绍的一个结论可知,从vsvi的这条路必定是从vsvi的最短路,所以d(vs,vi)必满足如下方程:
        

  为了求得这个方程的解 (这里P为图G中的顶点数目),可用如下递推公式:
  开始时,令
        
  对t=2,3,...,
        
         
  若进行到某一步,例如第k步时,对所有j=1,2,...,p,有:
        
即为vs到各点的最短路的权。

  不难证明:
  (1)如果G是不含回路的赋权有向图,那么,从vs到任一个点的最短路必可取为初等路,从而最多包含P2个中间点;
  (2)上述递推公式中的 是在至多包含t-1个中间点的限制条件下,从vsvj的最短路的权。

  由(1)(2)可知:当G中不含负回路时,上述算法最多经过p-1次迭代必定收敛,即对所有的j=1,2,...,P,均有 ,从而求出从vs到各个顶点的最短路的权。
  如果经过p-1次迭代,存在某个j,使 ,则说明G中包含有负回路。显然,这时从vsvj的路是没有下界的。
  根据以上分析,Bellman-Ford算法可描述为:

  

  算法实现

  1、 数据结构(同Dijkstra算法,略)
  2、源程序
 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值