自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

码农三叔

人到中年,突然想学习编程,是不是疯了!@

  • 博客(1534)
  • 资源 (2)
  • 收藏
  • 关注

原创 (1-3)强化学习的理论基础:OpenAI Gym环境初探

OpenAI Gym是一个开源的强化学习工具包,由 OpenAI团队开发和维护。OpenAI Gym提供了一系列标准化的环境(Environments),用于开发、测试和比较强化学习算法。OpenAI Gym 的目标是为强化学习研究提供一个简单、通用的接口,使得研究者可以快速实现和验证他们的算法。1. 核心功能标准化接口:所有环境都提供了一致的接口,包括 reset()、step() 和 render() 等方法,方便研究者快速切换和测试不同的环境。

2025-06-14 17:18:11 382 2

原创 (5-1)DeepSeek大模型应用开发实践:检索增强生成的基础知识

LangChain中的检索增强生成(Retrieval Augmented Generation,简称RAG)是一种结合检索和生成的先进技术,它先从外部知识库中检索与任务相关的片段,再将这些片段作为上下文输入给语言模型以生成更准确、丰富的文本。该方法能有效解决语言模型知识过时、生成内容不准确等问题,广泛应用于问答系统、内容创作和智能客服等领域。

2025-06-13 22:01:37 154 2

原创 (1-2)强化学习的理论基础:马尔可夫决策过程

强化学习的理论基础是马尔可夫决策过程(MDP),它通过状态空间、动作空间、转移概率、奖励函数和折扣因子五个要素描述智能体与环境的交互。MDP形式化定义了(S,A,P,R,γ)系统,其中奖励函数引导智能体学习最优策略。策略(π)是智能体的决策规则,值函数(V)和动作值函数(Q)分别评估状态和状态-动作对的长期收益。贝尔曼方程则提供了计算值函数的递归方法,通过迭代求解可以实现最优决策。这些概念共同构成了强化学习的数学框架,为算法设计和策略优化奠定理论基础。

2025-06-13 15:09:48 93

原创 (1-1)强化学习基础与核心概念:

强化学习是一种基于智能体与环境交互的机器学习方法,其核心是通过最大化累积奖励来学习最优决策策略。文章介绍了强化学习的基础知识,包括其诞生背景、核心思想与要素(智能体、环境、状态、动作和奖励),以及与其他机器学习方法的区别。同时探讨了强化学习面临的三大挑战:探索与利用的权衡、延迟奖励和维度灾难。最后概述了强化学习在机器人控制、游戏智能、金融决策、自动驾驶和自然语言处理等领域的广泛应用,展现了其在复杂决策问题中的强大潜力。

2025-06-12 20:18:48 23 1

原创 强化学习(加强篇)

12.3 大型实战:Predator-Prey 游戏 (使用MADDPG/QMIX)7.5 实战:GRPO 在复杂连续控制任务上的性能对比 (对比SAC/PPO)6.5 实战:SAC 训练机械臂抓取任务 (PyBullet/MuJoCo)14.2 任务定义与状态/动作空间设计 (关节角度/末端位姿, 扭矩/速度)1.1.1 核心思想与要素 (智能体, 环境, 状态, 动作, 奖励)1.1.3 强化学习的挑战 (探索/利用, 延迟奖励, 维度灾难)

2025-06-12 20:17:43 142 1

原创 (4-4-02)路径规划与决策:实战案例:路径算法性能分析与可视化(02)

本文摘要: 代码实现了一个完整的图算法分析系统,主要包括以下功能:1) Bellman-Ford算法的三种变体实现(随机、广度优先、深度优先排序),用于最短路径计算和负权环检测;2) Dijkstra算法的时间性能测试;3) 图的强连通性分析,包括传递闭包计算和强连通性检查;4) 随机图强连通概率的统计分析,通过蒙特卡洛方法估计不同连接概率下的强连通概率;5) 图形化展示图大小与强连通阈值的关系,并进行了对数尺度下的线性回归分析。实验结果表明,随着图规模增大,实现强连通所需的连接概率阈值呈递减趋势。该系统为

2025-06-12 11:13:47 100

原创 (4-4-01)路径规划与决策:实战案例:路径算法性能分析与可视化(01)

【摘要】本研究通过实现Dijkstra和Bellman-Ford等图论算法,对路径算法性能与强连通性阈值进行了系统分析。项目采用Python编程,结合NetworkX库实现图形可视化,构建了包含随机图生成、最短路径计算和强连通性测试等功能模块。实验通过比较不同算法在加权图中的表现,验证了Dijkstra算法在非负权重图中的高效性,并证明Bellman-Ford算法能有效处理含负权边的情况。研究还探讨了图规模与强连通性阈值的关系,通过可视化呈现了算法执行路径和网络结构特征,为图论算法的优化应用提供了实践依据。

2025-06-11 20:39:26 22

原创 (4-8)DeepSeek大模型应用开发实践:XML解析器

LangChain中的XML解析器是一种特殊的输出解析器,其主要作用是将大型语言模型(LLM)的文本输出转换为XML(可扩展标记语言)格式。通过使用XML解析器,可以确保从LLM获得的数据是结构化和格式化的,这样就可以在应用程序中轻松使用这些数据。(5)调用解析器:通过调用处理链的invoke方法,可以获取LLM的输出,并将其转换为XML格式。例如下面是一个使用XML解析器的例子,创建一个能够从大型语言模型(LLM)获取数据并以XML格式输出的系统,这个系统可以用于生成产品信息、新闻摘要信息等场景。

2025-06-11 15:23:30 131

原创 (4-7)DeepSeek大模型应用开发实践:Pandas DataFrame解析器

摘要:PandasDataFrame是Python数据分析的核心工具,提供二维表格数据结构,支持灵活索引、数据操作、清洗和可视化。在LangChain框架中,PandasDataFrame解析器(PandasDataFrameOutputParser)可与LLM结合,通过结构化查询从DataFrame提取数据并以字典格式返回。示例展示了如何使用DeepSeek模型查询动物信息,通过自定义JSON格式指令获取特定列数据。该解析器要求严格遵循输出格式,若查询不当会抛出异常。整个流程包括DataFrame创建、模

2025-06-11 10:33:49 261

原创 (4-3-02)路径规划与决策:Bellman-Ford路径规划(2)

本项目旨在比较和分析Dijkstra算法和Bellman-Ford算法在寻找最短路径问题上的表现,这两种算法都是解决最短路径问题的经典算法,但它们采用了不同的策略和技术。在本项目中首先实现了Dijkstra算法,该算法适用于没有负权边的图。然后,实现了Bellman-Ford算法,该算法能够处理包含负权边的图。通过这两种算法的实现,我们可以比较它们的运行时间、空间复杂度以及在不同场景下的表现。

2025-06-10 16:15:04 24 1

原创 (4-6)DeepSeek大模型应用开发实践:修正解析器

摘要:LangChain中的修正解析器(OutputFixingParser)能自动修复格式错误的输出。当原始Pydantic解析器因JSON格式错误(如属性名未用双引号)而失败时,修正解析器会调用ChatOpenAI等LLM尝试修复。示例中,它将错误格式"{'name':'TomHanks'}"修复为符合Actor模型的正确对象Actor(name='TomHanks',film_names=['ForrestGump'])。使用修正解析器时需做好异常处理准备,因为当LLM无法修复时仍

2025-06-10 15:56:10 32 1

原创 (4-5)DeepSeek大模型应用开发实践:JSON解析器

JSON解析器允许用户指定任意的JSON模式,并查询LLM以获取符合该模式的输出。在使用JSON解析器时,需要注意有时可能无法总是生成完全符合预期的JSON格式的输出。执行上述代码后将得到两种类型的输出:一种是直接调用chain.invoke方法得到的完整JSON对象,另一种是通过流式调用chain.stream方法逐步得到的JSON片段。这是因为流式输出支持逐步处理输出,而不是等待整个输出生成完毕。上面的输出结果展示了LLM生成的笑话是如何逐步构建的,每个片段都是一个包含部分或全部笑话的JSON对象。

2025-06-10 10:41:38 206 1

原创 (4-4)DeepSeek大模型应用开发实践:枚举解析器

LangChain的枚举解析器(EnumOutputParser)可以将大语言模型(LLM)的文本输出转换为预定义的枚举类型。示例中定义了一个Colors枚举类(RED,GREEN,BLUE),通过提示模板限制模型仅输出颜色名称。当询问"Frank Sinatra眼睛颜色"时,若模型返回"blue",解析器会将其转换为Colors.BLUE枚举值。这种方法实现了对模型输出的结构化处理,确保响应符合预定义的枚举范围。

2025-06-09 15:54:38 102 2

原创 (4-3)DeepSeek大模型应用开发实践:日期/时间解析器

日期/时间解析器在数据处理、分析和机器学习等领域发挥关键作用,能统一不同格式的时间数据,提高一致性和处理效率。它能自动解析时间字符串,支持复杂查询、国际化格式和错误检测,适用于日志分析、事件规划等场景。在LangChain中,DatetimeOutputParser可将LLM输出转换为标准时间格式(如ISO8601),支持自定义格式和异常处理。示例展示了如何通过解析器获取美国成立日期(1776-07-04),实现从自然语言到结构化时间的转换。

2025-06-08 10:40:13 35 2

原创 (4-2)DeepSeek大模型应用开发实践:CSV输出解析器

CSV输出解析器是一种将数据转换为CSV格式的工具。CSV作为通用表格数据格式,具有纯文本、逗号分隔、支持换行等特点,便于跨系统数据交换。LangChain的CSV解析器能将LLM输出转换为CSV列表,支持自定义分隔符、批量处理和流式处理等功能。示例代码展示了如何通过CommaSeparatedListOutputParser将DeepSeek模型生成的冰淇淋口味列表(如香草、巧克力等)转换为CSV格式,并提供了直接解析和流式处理两种实现方式。该工具适用于需要将AI输出导入电子表格或数据库的场景。

2025-06-08 10:38:58 133 2

原创 ​《DeepSeek 源码深度解析》中国人工智能学会理事长推荐,国内一线大咖专家作品

中国人工智能学会理事长推荐,国内一线大咖专家作品

2025-06-06 16:29:52 1101 2

原创 (4-1)DeepSeek大模型应用开发实践:输出解析器基础

摘要:LangChain的输出解析器(OutputParsers)是将大型语言模型(LLMs)生成的自由文本转换为结构化数据的关键工具。其主要功能包括多模型兼容性、自定义解析规则、上下文感知、错误处理及模块化设计,能有效解决模型输出

2025-06-06 11:01:42 30 2

原创 (3-5-02)DeepSeek大模型应用开发实践:使用大语言模型(LLMs)

大语言模型(LLMs)作为深度学习技术在NLP领域的重要应用,LangChain提供了标准接口与不同供应商的LLMs交互。通过LLM包装器,用户可自定义模型并集成到LangChain中,只需实现_call方法和_llm_type属性即可。示例代码展示了如何创建返回输入前n个字符的自定义LLM,并演示了同步/异步调用、批量处理和流式输出等功能,实现了与LangChain生态系统的无缝集成。这种设计提高了LLM使用的灵活性,同时保留了框架的优化特性。

2025-06-06 11:00:23 112 1

原创 (3-4-02)DeepSeek大模型应用开发实践:聊天模型(2)

本文介绍了如何在LangChain中获取对话模型生成标记的对数概率。对数概率表示模型对生成特定标记的置信度,值越接近零表示置信度越高。通过配置ChatOpenAI实例并调用invoke方法,可以获取响应文本及其对数概率。代码示例展示了设置API密钥、创建模型实例、获取响应和提取对数概率的全过程,包括流式输出的处理方式。输出结果显示了前五个标记及其对应的对数概率,有助于分析模型的决策过程和质量评估。

2025-06-05 13:45:29 22 1

原创 (3-4-01)DeepSeek大模型应用开发实践:聊天模型(1)

摘要: LangChain的聊天模型核心在于处理结构化对话消息,支持多种消息类型(用户、AI、系统等),并通过角色和内容属性组织交互。系统提供内存和SQLite两种缓存方案优化性能,示例展示了如何缓存对话减少模型调用。此外,开发者可继承BaseChatModel自定义聊天模型,需实现_generate方法处理消息逻辑,并可选支持流式输出。示例代码演示了回显最后n字符的模型实现,覆盖同步/异步调用及流式处理,输出包含响应元数据和分块内容,体现LangChain灵活的模型扩展能力。(147字)

2025-06-05 13:42:45 118 1

原创 中国人工智能学会理事长推荐,国内一线大咖专家作品

《DeepSeek源码深度解析》是薛栋与黄捷合著的技术专著,由北京大学出版社2025年5月出版。全书7章系统解析DeepSeek开源框架,涵盖混合专家模型(MoE)、多模态融合、推理优化等核心技术,配有67GB实战资源。作者团队来自华东理工大学和福州大学,兼具学术深度与工程实践。本书获中国人工智能学会副理事长和华为专家联袂推荐,被誉为"从原理到源码的AI开发宝典",京东、当当等平台均有售。适合AI工程师、研究者及高校师生深度学习框架二次开发参考。

2025-06-04 21:20:09 925 2

原创 (3-3-02)DeepSeek大模型应用开发实践:BaseChatPromptTemplate模版(2)

在某些情况下,可能会希望在创建提示模板时,某些变量的值是由特定的方法或函数动态获取的,而不是由用户手动输入或者固定的值。一个典型的例子是日期或时间。ChatPromptTemplate可以将多个消息组合在一起来创建一个聊天模板,每个消息可以是系统消息、人类消息或AI消息,它们按照特定的顺序组合在一起。相反,可以使用 foo 的值部分化提示模板,然后继续传递部分化的提示模板,只需传入剩余的变量即可。在LangChain中,可以使用不同的方法来实现模板的组合,包括字符串模板的组合和聊天模板的组合。

2025-06-04 15:06:45 24 2

原创 (3-3-01)DeepSeek大模型应用开发实践:BaseChatPromptTemplate模版(1)

摘要:BaseChatPromptTemplate是LangChain中用于构建聊天机器人对话系统的核心模板类,提供格式化消息、批量处理等功能,支持异步操作。FewShotChatMessagePromptTemplate是其子类,专门用于少量示例学习场景,通过示例数据生成格式化的聊天提示。示例代码展示了如何使用FewShot模板结合DeepSeek模型实现动物叫声问答任务,包括定义示例、创建模板、调用模型等步骤,最终输出格式化提示和模型生成的拟声词回答。该模板系统提高了文本生成的灵活性和效率。

2025-06-04 15:03:36 22 1

原创 (3-2-03)DeepSeek大模型应用开发实践:示例选择器(03)

NGram示例选择器是LangChain中基于N-gram模型的示例选择工具,通过分析单词序列匹配度筛选最相关示例。本文演示了使用NGramOverlapExampleSelector构建西译中翻译系统:1)定义示例数据和Prompt模板;2)初始化选择器配置阈值;3)结合FewShotPromptTemplate和DeepSeek模型生成翻译;4)动态添加新示例后再次调用。代码展示了如何通过N-gram重叠度动态选取示例,并输出格式化提示及模型响应,体现了该选择器在上下文相关任务中的应用价值。执行结果成功

2025-06-03 15:18:48 29 2

原创 (3-2-02)DeepSeek大模型应用开发实践:示例选择器(02)

在LangChain中,Similarity示例选择器通常使用余弦相似性作为度量文本之间相似性的主要方法。这种方法可以有效地捕捉到文本的语义信息,因为即使在词汇不同的情况下,具有相似含义的文本也会具有较高的余弦相似性。请看下面的例子,展示了使用 LangChain 的 SemanticSimilarityExampleSelector 结合 DeepSeek 模型实现语义相似性对话生成任务的过程。MMR在选择与输入最相似的示例的同时,还优化了所选示例之间的多样性。上述代码的实现流程如下所示。

2025-06-03 11:09:26 123 1

原创 新书推荐:《鸿蒙HarmonyOS应用开发100例》

作为一个对国产系统充满信仰的开发者,我刚拿到这本书的时候,内心OS是:“100个案例?这本书的案例设计得超贴心,从最简单的“用户登录框”到复杂的“在线支付系统”,循序渐进,完全不用担心被劝退!作为一个对国产系统充满热爱的开发者,看到这本书的时候,我直接泪目了!这本书直接把鸿蒙开发的全貌摆在你面前,从基础的UI组件到高阶的AI开发,100个案例手把手教你从零到精通!这本书不仅是技术指南,更是对国产系统的一份支持!:人脸识别、文字识别、语音识别,这些听起来高大上的功能,书里居然都有详细教程!

2025-05-31 18:35:31 865 4

原创 (3-2-01)DeepSeek大模型应用开发实践:示例选择器(01)

示例选择器是LangChain框架中用于优化语言模型交互的关键组件,它通过智能筛选最相关的示例来提升模型性能。摘要要点如下: 核心功能:示例选择器能从大量示例中动态选择适合当前任务的示例,用于few-shot学习场景,提高模型理解和输出质量。 主要类型: 语义相似度(Similarity) 最大边际相关性(MMR) 基于长度(LengthBased) N-gram重叠 应用实例: 翻译任务中使用长度匹配选择器(如"banana"匹配5字母单词) 反义词生成中根据输入长度自动调整示例数量

2025-05-31 18:33:34 43 3

原创 (3-1)DeepSeek大模型应用开发实践:模型交互工具

摘要:本文介绍了LangChain框架中模型交互工具的数据增强技术及应用实例。主要包括:(1)PromptTemplate组件用于动态生成提示模板,实例演示了生成童话故事的过程;(2)ChatPromptTemplate支持多轮对话场景,展示未来预测AI助手的实现;(3)MessagesPlaceholder灵活处理动态消息插入;(4)LCEL表达式语言构建复杂任务流程。通过结合DeepSeek模型,这些工具简化了语言模型应用的开发,提高了交互灵活性和效率。关键技术包括模板格式化、消息管理、链式操作等,为构

2025-05-31 18:29:50 120

原创 北京大学院士推荐作品《DeepSeek 源码深度解析》

本书系统讲解了DeepSeek源码及其核心实现原理,内容覆盖从基础概念到高级应用的全流程知识。第1章:对DeepSeek进行全面概述,帮助读者构建整体认知。第2章:聚焦环境搭建、代码获取与模型部署接入。第3章:深入探讨混合专家模型(MoE)的基本原理、功能模块与优化技术。第4章:详细解析DeepSeek-V3模型的架构知识,并通过测试验证展示实际效果。第5章:围绕统一多模态大模型,介绍Janus系列架构、核心技术及工具模块。第6章。

2025-05-29 15:47:45 795 3

原创 (2-2)DeepSeek大模型应用开发实践:引用大模型

本文介绍了使用LangChain框架与DeepSeek大模型进行交互的实践方法,主要包括四种调用方式:1.流式调用实现实时文本生成;2.使用提示模板动态生成问题;3.结构化返回将输出转换为预定义格式;4.基于检索增强生成(RAG)构建知识问答系统。通过具体代码示例展示了每种方法的实现流程,重点讲解了如何结合向量数据库实现更精准的问题回答。这些技术可有效降低延迟、提升交互体验,适用于聊天机器人、知识管理等需要即时反馈和复杂处理的场景。

2025-05-29 15:46:20 412 1

原创 探索编程新境界,《华为仓颉语言编程从入门到精通》带你开启高效开发之旅!

《华为仓颉语言编程从入门到精通》是一本系统介绍华为自研编程语言的权威教程。由HarmonyOS技术专家刘陈编写,全书19章从基础到高级循序渐进,包含丰富实战案例和"圆角图片视图库"综合项目。该书适合编程新手、进阶开发者、高校师生及技术爱好者,帮助读者掌握仓颉语言在全场景应用开发中的使用。目前已在京东、当当等平台及抖音、小红书等新媒体渠道上架销售。

2025-05-28 20:36:07 608 3

原创 中国人工智能学会副理事长推荐《DeepSeek 源码深度解析》

《DeepSeek源码深度解析》是一本系统讲解DeepSeek大模型核心技术的专业指南,由薛栋和黄捷联合编著。全书共7章,涵盖混合专家模型(MoE)、多模态融合、推理优化等关键技术,配套67GB实战资源。专家评价其"兼具理论深度与实践价值",华为技术专家称其"揭示了DeepSeek的架构哲学"。本书适合AI工程师、研究者及高校师生,通过京东/当当等平台可购买(定价119元)。北京大学出版社2025年5月出版,ISBN 9787301361580。

2025-05-28 20:32:48 1210

原创 中国人工智能学会副理事长推荐,国内专家力作《DeepSeek 源码深度解析》震撼上市

在人工智能飞速发展的今天,DeepSeek 作为大模型领域的佼佼者,正重塑着我们对智能系统的认知。它凭借卓越的性能和广泛的应用潜力,为科研人员和开发者带来前所未有的机遇。《DeepSeek 源码深度解析》重磅来袭,成为您挖掘 DeepSeek 潜力、掌握前沿 AI 技术的得力助手。

2025-05-27 20:46:11 742 3

原创 (2-1)LangChain开发基础:LangChain应用程序的构成

LangServe是一个用于构建和部署基于 LangChain 的自然语言处理(NLP)模型应用程序的框架,它使得开发者可以轻松地将训练好的模型集成到 Web 服务中,并提供 API 接口,以便其他应用程序进行调用。在有了这个新的检索器,我们可以创建一个新的链,以在考虑这些检索到的文档的情况下继续对话。目前,LangServe 的开发团队正在持续改进和扩展其功能,未来的更新可能包括更多的端点、更好的认证和授权机制、更丰富的 Playground 小部件,以及对更多编程语言和框架的支持。

2025-05-27 20:39:47 140 1

原创 从今天开始,写《大模型应用开发:基于Langchain和DeepSeek》1.1 第一个LangChain程序:调用DeepSeek实现对话

LangChain可以构建由语言模型驱动的上下文感知和推理能力的应用程序,通过pip或conda安装LangChain后,可以利用langchain-community、langchain-core、langchain-experimental等附加包,以及LangServe、LangChain CLI和LangSmith SDK等辅助工具进行更深层次的集成、部署和开发。LangChain 的设计目标是简化开发过程,提供模块化的抽象和用例特定链,使开发者可以轻松地开始特定用例的开发,并允许这些链的定制化。

2025-05-27 20:33:32 30 1

原创 (12-5-03)仿Manus通用AI Agent系统:Agent模块(3)链式推理Agent

文件planning.py实现了类PlanningAgent,这是一个用于创建和管理解决任务的计划的代理。类PlanningAgent使用一个规划工具来构建和管理结构化的计划,并通过单个步骤跟踪任务的进展,直到任务完成。代理能够处理多个工具调用,并跟踪每个步骤的执行状态,确保任务按计划进行。文件cot.py实现了链式推理(Chain of Thought, CoT)代理类CoTAgent,专注于展示大型语言模型的推理过程,而不执行任何工具。类CoTAgent通过处理一条推理链,模拟思维的步骤来得出结论。

2025-05-25 09:38:10 350 4

原创 《DeepSeek 源码深度解析》重磅来袭

在人工智能飞速发展的今天,DeepSeek 作为大模型领域的佼佼者,正重塑着我们对智能系统的认知。它凭借卓越的性能和广泛的应用潜力,为科研人员和开发者带来前所未有的机遇。《DeepSeek 源码深度解析》重磅来袭,成为您挖掘 DeepSeek 潜力、掌握前沿 AI 技术的得力助手。

2025-05-25 08:54:30 810 1

原创 支持国产科技,推荐一本仓颉语言书。

内容布局循序渐进,先夯实编程基础,再深入函数、结构、枚举、面向对象编程、泛型等进阶知识,直击实战,结合扩展、集合、包管理等内容,全方位提升开发效能。它与鸿蒙系统的深度融合,将为开发者带来更加便捷、高效的开发体验,加速鸿蒙应用的创新和推广,助力鸿蒙生态的繁荣发展,推动我国信息技术产业向更高层次迈进。本书从鸿蒙系统的分布式架构和多设备支持切入,详尽解析仓颉语言的核心特性和应用场景,覆盖系统级开发、智能设备应用、物联网与嵌入式系统等领域,助力开发者在国产生态中大展拳脚。

2025-05-25 08:36:57 830

原创 (12-5-02)仿Manus通用AI Agent系统:Agent模块(2)浏览器Agent

文件browser.py实现了浏览器Agent,使用 browser_use 库控制浏览器,能够执行网页浏览、与页面元素互动、填充表单、提取内容等操作,完成任务。浏览器Agent能够获取浏览器的当前状态(如 URL、标签信息和截图),并根据这些信息调整执行策略,以适应不同的浏览器操作。

2025-05-21 18:29:35 252 3

原创 (12-5-01)仿Manus通用AI Agent系统:Agent模块(1)抽象基类

文件base.py定义了抽象基类BaseAgent,负责管理智能代理的状态、记忆和执行流程。类BaseAgent提供了状态转换、记忆管理和基于步骤的执行循环等基础功能,子类实现了step 方法来定义具体的行为。Agent模块是本项目的核心部分,负责管理和协调多个子模块,以便执行任务和处理不同类型的请求。Agent模块包含了多种工具和方法,如浏览器操作、推理链(COT)和任务规划,用于支持复杂的决策和自动化流程。通过不同的工具和策略,Agent模块能够灵活应对不同的场景和需求,提供强大的功能扩展和可定制化。

2025-05-21 17:40:03 250 1

文本分类与情感分析算法 数据集

我的专栏《NLP算法实战》https://mp.csdn.net/mp_blog/manage/column/columnManage/12584253中第4章 文本分类与情感分析算法 用到的数据。 文本分类和情感分析是自然语言处理(NLP)中常见的任务,它们可以用于将文本数据归类到不同的类别或者分析文本中的情感极性。在本章的内容中,将详细讲解在自然语言处理中使用文本分类和情感分析算法的知识。

2024-05-22

行为预测算法:基于自动驾驶大模型的车辆轨迹预测系统

是我的技术文章https://blog.csdn.net/asd343442/article/details/137137667的配套源码,LyftModel 是指来自 Lyft Level 5 Research 的一个用于自动驾驶的深度学习模型。Lyft 是一家美国的科技公司,致力于开发自动驾驶技术,他们的 Level 5 Research 部门专注于研究和开发自动驾驶技术。LyftModel 很可能是他们开发的一种用于自动驾驶的深度学习模型,用于实现自动驾驶系统中的各种功能,例如感知、规划、控制等。

2024-05-13

专栏《NLP算法实战》中第9部分《大模型Transformer》的所有配套源码

本专栏深(https://blog.csdn.net/asd343442/category_12584253.html)入探讨了自然语言处理(NLP)的核心算法和实际应用的知识,从基础理论到高级技术,全面展示了NLP领域的最新发展。通过清晰的解释、实用的示例和实战项目,读者将在掌握NLP的同时获得实际项目开发的经验。 Transformer模型是一种用于自然语言处理和其他序列到序列任务的深度学习模型,最早由Google的研究人员在2017年提出,并在NIPS(Neural Information Processing Systems)会议上发表了题为《Attention is All You Need》的论文。在本章的内容中,将详细讲解在自然语言处理中使用Transformer模型的知识。

2024-04-24

斗转星移换图系统(PyTorch+Visdom+CycleGAN)源码

本源码是专栏教程https://blog.csdn.net/asd343442/article/details/138044391的配套资料,在本章的内容中,将通过一个项目的实现过程,详细讲解使用Python深度学习技术实现图像转换功能的过程。本项目的名字为"斗转星移换图系统",能够以指定的图片为素材,将图片中的动物换成不同的装扮样式,例如将普通的一批马换成一批斑马。

2024-04-24

Tensorflow机器翻译系统和PyTorch机器翻译系统

赢粉丝要求,上传我的专栏《大模型从入门到实战》中Tensorflow机器翻译系统和PyTorch机器翻译系统的源码和数据集,完整源码,完整数据集。

2024-03-22

AI智能问答系统的源码资料

本源码和数据是我的专栏《模型从入门到实战》中AI智能问答系统的配套资料,专栏地址是:https://blog.csdn.net/asd343442/article/details/135863785,应粉丝要求,上传源码。

2024-03-15

《基于深度强化学习的量化交易策略》一文的源码

应粉丝要求,需要基于深度强化学习的量化交易策略”系列工程的源代码。本人写作是业余爱好,发源码可能会比较拖沓。以后想办法搞个粉丝群,在群里面发会方便一些。博文地址是:https://blog.csdn.net/asd343442/article/details/135739667

2024-02-29

比特币价格预测系统的项目的源码和数据集

专栏《金融大模型实战》中(11-4)比特币价格预测系统的源码和数据集,专栏地址是:https://blog.csdn.net/asd343442/category_12531576.html?spm=1001.2014.3001.5482,欢迎大家观看,本专栏会持续更新,和大家共同进步学习、

2024-01-13

我的专栏《大模型从入门到实战》2-1到2-3的配套源码,包含数据集

我的专栏《大模型从入门到实战》https://blog.csdn.net/asd343442/category_12541559.html中2-1到2-3的配套源码,包含数据集。本篇介绍了数据集的加载、基本处理和制作方法,欢迎大家关注,我会一直更新下去。

2024-01-11

金融大模型实战:个人专栏《检测以太坊区块链中的非法账户》项目的源码和数据集

个人专栏《检测以太坊区块链中的非法账户》项目的源码和数据集,专栏地址:https://blog.csdn.net/asd343442/category_12531576.html?spm=1001.2014.3001.5482,欢迎大家订阅学习,共同进步

2024-01-11

android网络编程

《android4.0网络编程详解》一书的源码,是1-7章的代码

2013-11-01

工资管理系统 +源码+25000字论文

事业单位工资管理系统,有完整的源码,并有word版本的25000字论文

2013-01-01

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除