zhu_hit原创,如需转载请注明出处。Thanks
德梅齐里亚克砝码问题:一位商人有一个40磅重的砝码,由于跌落在地而碎成4块,称得每块碎片的重量都是整磅数,而且可以用这4块来称出从1到40磅之间的任意整数磅的重物,请问这4块碎片分别为多重?
我首先给出问题的答案,可能聪明的人看到答案的形式就能猜到其中的规律:1,1*2+1=3,(1+3)*2+1=9,(1+3+9)*2+1=27.
解这个问题挺有意思的,不需要什么高深的数学知识又很好玩。首先我们来参照一下人民币的币值。我们的分币有1,2,5三种币值,两两可以组成1到8之间的若干值,同样,我们在这道砝码问题中第一个要考虑的因素就是排列组合值。1,2,1+2,5,1+5,2+5,1+2+5。
此外,天平称重的另一个特性就是,砝码可以放在左右任意一个托盘中,所以我们就得到了这个问题的第二格特质:排列组合的得出的结果可以取加法,还可以取减法。这样,在上面列出的数字的基础上,我们又得到了2-1,5-1,5-2,5-1-2(就像买东西找零钱一样)。我们发现这些新的值和上面的值有重合,也就是有冗余值,我们的优化过程就是要消除这些冗余值。
好的,现在我们得到了两个数学概念:排列组合和加减法。我们将使用这两个概念来解砝码问题。首先引入两个变量,设已知的所有砝码的重量之和为M,我们要选的砝码值是x。