LeetCode 64/62/63. Minimum Path Sum/ Unique Paths i, ii

原创 2016年04月25日 11:01:33

1. 题目描述

1.1 62

A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).

How many possible unique paths are there?

1.2 63

Follow up for “Unique Paths”:

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.

Note: m and n will be at most 100.

1.3 64

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

2. 解题思路

这三道题目都是典型的dp 问题, 类型相似, 写出来的代码也基本相同

3. code

3.1 62

class Solution {
public:
    int uniquePaths(int m, int n) {
        if (m <= 0 || n <= 0) return 0;
        vector<int> arr(n, 0);
        for (int i = 0; i != m; i++){
            for (int j = 0; j != n; j++){
                if (i == 0 && j == 0)
                    arr[j] = 1;
                else if (i == 0)
                    arr[j] = arr[j - 1];
                else if (j == 0)
                    arr[j] = arr[j];
                else
                    arr[j] = arr[j] + arr[j - 1];
            }
        }
        return arr[n - 1];
    }
};

3.2 63

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& grid) {
        if (grid.size() == 0) return 0;
        vector<int> arr(grid[0].size(), 0);
        for (int i = 0; i != grid.size(); i++){
            for (int j = 0; j != grid[0].size(); j++){
                if (i == 0 && j == 0)
                    arr[j] = (grid[i][j] == 0);
                else if (i == 0)
                    arr[j] =  grid[i][j] ? 0 : arr[j - 1];
                else if (j == 0)
                    arr[j] =  grid[i][j] ? 0 : arr[j];
                else
                    arr[j] =  grid[i][j] ? 0 : (arr[j] + arr[j - 1]);
            }
        }
        return arr[grid[0].size() - 1];
    }
};

3.3 64

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        if (grid.size() == 0) return 0;
        vector<int> arr(grid[0].size(), 0);
        for (int i = 0; i != grid.size(); i++){
            for (int j = 0; j != grid[0].size(); j++){
                if (i == 0 && j == 0)
                    arr[j] = grid[i][j];
                else if (i == 0)
                    arr[j] = arr[j - 1] + grid[i][j];
                else if (j == 0)
                    arr[j] = arr[j] + grid[i][j];
                else
                    arr[j] = min(arr[j], arr[j - 1]) + grid[i][j];
            }
        }
        return arr[grid[0].size() - 1];
    }
};

4. 大神解法

4.1 62

/*
This is a fundamental DP problem. First of all, let's make some observations.

Since the robot can only move right and down, when it arrives at a point, there are only two possibilities:

It arrives at that point from above (moving down to that point);
It arrives at that point from left (moving right to that point).
Thus, we have the following state equations: suppose the number of paths to arrive at a point (i, j) is denoted as P[i][j], it is easily concluded that P[i][j] = P[i - 1][j] + P[i][j - 1].

The boundary conditions of the above equation occur at the leftmost column (P[i][j - 1] does not exist) and the uppermost row (P[i - 1][j] does not exist). These conditions can be handled by initialization (pre-processing) --- initialize P[0][j] = 1, P[i][0] = 1 for all valid i, j. Note the initial value is 1 instead of 0!

Now we can write down the following (unoptimized) code.
*/
class Solution {
    int uniquePaths(int m, int n) {
        vector<vector<int> > path(m, vector<int> (n, 1));
        for (int i = 1; i < m; i++)
            for (int j = 1; j < n; j++)
                path[i][j] = path[i - 1][j] + path[i][j - 1];
        return path[m - 1][n - 1];
    }
};
/*
As can be seen, the above solution runs in O(n^2) time and costs O(m*n) space. However, you may have observed that each time when we update path[i][j], we only need path[i - 1][j] (at the same column) and path[i][j - 1] (at the left column). So it is enough to maintain two columns (the current column and the left column) instead of maintaining the full m*n matrix. Now the code can be optimized to have O(min(m, n)) space complexity.
*/
class Solution {
    int uniquePaths(int m, int n) {
        if (m > n) return uniquePaths(n, m); 
        vector<int> pre(m, 1);
        vector<int> cur(m, 1);
        for (int j = 1; j < n; j++) {
            for (int i = 1; i < m; i++)
                cur[i] = cur[i - 1] + pre[i];
            swap(pre, cur);
        }
        return pre[m - 1];
    }
};
/*
Further inspecting the above code, we find that keeping two columns is used to recover pre[i], which is just cur[i] before its update. So there is even no need to use two vectors and one is just enough. Now the space is further saved and the code also gets much shorter.
*/
class Solution {
    int uniquePaths(int m, int n) {
        if (m > n) return uniquePaths(n, m);
        vector<int> cur(m, 1);
        for (int j = 1; j < n; j++)
            for (int i = 1; i < m; i++)
                cur[i] += cur[i - 1]; 
        return cur[m - 1];
    }
}; 
/*
Well, till now, I guess you may even want to optimize it to O(1) space complexity since the above code seems to rely on only cur[i] and cur[i - 1]. You may think that 2 variables is enough? Well, it is not. Since the whole cur needs to be updated for n - 1 times, it means that all of its values need to be saved for next update and so two variables is not enough.
*/
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

leetcode - 62,63. Unique Paths(II) & 64.Minimum Path Sum

算法系列博客之Dynamic Programming 本篇博客将运用动态规划的思想来解决leetcode上264号问题这三个题目的共同之处在于均是二维矩阵上的规划问题问题描述:62 Unique Pa...
  • Quiteen
  • Quiteen
  • 2017年06月11日 20:40
  • 94

leetcode解题之62&63. Unique Paths ||64. Minimum Path Sum java版(路径(最短)可达)

leetcode解题之62&63. Unique Paths || java版(路径可达) ,63. Unique Paths II ,62. Unique Paths 。64. Minimum Pa...

LeetCode 62/63/120/64 Unique PathsI/II Triangle/Min sum Path/Rectangle Area--DP

一:unique Path 题目: A robot is located at the top-left corner of a m x n grid (marked 'Start' in the ...

LeetCode 1.Minimum Path Sum 2.Unique Paths I and II

大家好,我是刘天昊,快到端午节了,今天说两道动态规划的题目(话说动规真的挺难的) 当然这三题是一样的解体思路先看Unique Paths  A robot is located a...

<LeetCode OJ> 62. / 63. Unique Paths(I / II)

63. Unique Paths II My Submissions Question Total Accepted: 55136 Total Submissions: 191949 Diff...

leetcode题解-561. Array Partition I && 62. Unique Paths && 63. Unique Paths II

561,题目:Given an array of 2n integers, your task is to group these integers into n pairs of integer, ...

leetcode系列(64)Uniq Paths, Uniq Path II, Minimum Path Sum

这三个题目非常相似,都是用动态规划解决,把他们放到一起吧。 Uniq Paths A robotis located at the top-left corner of a m x n gri...
  • macchan
  • macchan
  • 2015年11月07日 15:15
  • 236

LeetCode 62 Unique Paths & 63 Unique Paths II

题目 (leetcode62)A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diag...

Leetcode-62. Unique Paths and 63. Unique Paths II

Leetcode-62. Unique Paths 题目: A robot is located at the top-left corner of a m x n grid (marke...

LeetCode-62. Unique Paths/63. Unique Paths II

Problem: A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagr...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:LeetCode 64/62/63. Minimum Path Sum/ Unique Paths i, ii
举报原因:
原因补充:

(最多只允许输入30个字)