聚类(6)-- Affinity Propagation Clustering

AP算法是一种高维、多类数据快速聚类方法,2007年发表于Science。它通过相似度s(i,k)进行聚类,无需预设聚类中心数量。AP算法中数据点间传递吸引度r(i,k)和归属度a(i,k)信息,通过迭代确定聚类中心。算法更新过程包括吸引度和归属度的计算,以及衰减系数lamda的使用,以避免振荡。AP算法的优点在于自适应确定聚类个数并高效运行。" 51376203,1499693,UITableView分割线顶端对齐实现,"['iOS开发', 'Swift', 'Objective-C', 'UITableView', '布局']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Affinity Propagation Clustering(吸引力传播聚类,简称AP算法)是2007在Science上发表的一篇single-exemplar-based的聚类方面的文章。特别适合高维、多类数据快速聚类,相比传统的聚类算法,从聚类性能和效率方面都有大幅度的提升,下文将详细介绍AP算法。

对于个数据点的聚类问题,设定数据点为x(i),i= 1,2,...,N。吸引力传播聚类(AP)算法选择数据点之间的相似度s(i,k) = sum((x(i)-x(k)).^2)作为输入,其中s(i,k)表征数据点x(k)与数据点x(i)之间的相似程度。根据相似度公式有s(k,k) = 0,由于s(k,k)表征的是数据点x(k)成为聚类中心的能力大小,即偏好参数,所以就不能根据测度性质将其设置为0,而应该结合其他数据点来共同确定。AP算法认为,迭代开始之前所有数据点成为聚类中心的能力大小相同,所以对于所有数据点设置相同的偏好参数,一般选择为所有相似度值的最小值或者中值,即s(k,k) = min(s(i,j))(i,j=1,2,...N)或者s(k,k) = median(s(i,j))(i,j=1,2,...N)。s(k,k)越大,表征任意数据点x(k)成为聚类中心的能力越强,则最终聚类数目越大;反之,则最终聚类数目越小。

AP算法中,数据点之间传递着两种信息,即吸引度信息r(i,k)和归属度信息a(i,k),每一种信息侧重一种竞争。AP算法为选择合适的聚类中心需要不断的从数据点中搜集两方面的证据:候选聚类中心x(k)对任一数据点x(i)的吸引度信息r(i,k)和数据点x(i)选择候选聚类中心x(k)的归属度信息a(i,k)。当两种信息都较大时,说明数据点x(k)成为聚类中心的能力较大。通过不断的迭代过程,两种信息在数据点之间传递,直到选出m个聚类中心和确定数据点与聚类中心的归属关系为止。

吸引度信息的计算公式如下:

  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值