OpenCV
文章平均质量分 85
zouxy09
关注机器学习计算机视觉人机交互和人工智能领域。
展开
-
Kinect开发学习笔记之(八)彩色、深度、骨骼和用户抠图结合
Kinect开发学习笔记之(八)彩色、深度、骨骼和用户抠图结合zouxy09@qq.comhttp://blog.csdn.net/zouxy09 我的Kinect开发平台是:Win7 x86 + VS2010 + Kinect for Windows SDK v1.6 + OpenCV2.3.0开发环境的搭建见上一文: http://blog.csdn.net/zou原创 2012-11-08 17:30:43 · 22294 阅读 · 14 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(四)
下面是自己在看论文和这些大牛的分析过程中,对代码进行了一些理解,但是由于自己接触图像处理和机器视觉没多久,另外由于自己编程能力比较弱,所以分析过程可能会有不少的错误,希望各位不吝指正。而且,因为编程很多地方不懂,所以注释得非常乱,还海涵。run_tld.cpp#include #include #include #include //c++中的sstream类,提供了程序和原创 2012-08-21 20:25:52 · 34670 阅读 · 15 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(五)
下面是自己在看论文和这些大牛的分析过程中,对代码进行了一些理解,但是由于自己接触图像处理和机器视觉没多久,另外由于自己编程能力比较弱,所以分析过程可能会有不少的错误,希望各位不吝指正。而且,因为编程很多地方不懂,所以注释得非常乱,还海涵。LKTracker.h#include#include //使用金字塔LK光流法跟踪,所以类的成员变量很多都是OpenCV中calcOptic原创 2012-08-21 20:28:45 · 24265 阅读 · 8 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(六)
下面是自己在看论文和这些大牛的分析过程中,对代码进行了一些理解,但是由于自己接触图像处理和机器视觉没多久,另外由于自己编程能力比较弱,所以分析过程可能会有不少的错误,希望各位不吝指正。而且,因为编程很多地方不懂,所以注释得非常乱,还海涵。TLD.h#include #include #include #include #include //Bounding Boxesstr原创 2012-08-21 20:35:26 · 29496 阅读 · 34 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(七)
下面是自己在看论文和这些大牛的分析过程中,对代码进行了一些理解,但是由于自己接触图像处理和机器视觉没多久,另外由于自己编程能力比较弱,所以分析过程可能会有不少的错误,希望各位不吝指正。而且,因为编程很多地方不懂,所以注释得非常乱,还海涵。 FerNNClassifier.h/* * FerNNClassifier.h * * Created on: Jun 14, 201原创 2012-08-21 20:37:16 · 19405 阅读 · 27 评论 -
目标检测的图像特征提取之(三)Haar特征
目标检测的图像特征提取之(三)Haar特征zouxy09@qq.com1、Haar-like特征 Haar-like特征最早是由Papageorgiou等应用于人脸表示,Viola和Jones在此基础上,使用3种类型4种形式的特征。Haar特征分为三类:边缘特征、线性特征、中心特征和对角线特征,组合成特征模板。特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白色矩原创 2012-08-31 15:41:28 · 155714 阅读 · 23 评论 -
浅析人脸检测之Haar分类器方法:Haar特征、积分图、 AdaBoost 、级联
浅析人脸检测之Haar分类器方法一、Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来。 目前的人脸检测方法主要有两大类:基于知识和基于统计。Ø 基于知识的方法:主要利用先验知识将人脸看作器官特征的组合,根转载 2012-08-30 09:55:48 · 97976 阅读 · 51 评论 -
简单粗糙的指尖检测方法(FingerTips Detection)
简单粗糙的指尖检测方法(FingerTips Detection)zouxy09@qq.comhttp://blog.csdn.net/zouxy09 在人机交互领域,如果可以比较好的检测指尖,对于交互的丰富度、灵活性来说是有很大提升的。目前指尖检测的方法也很多,我这里稍微尝试了下简单了两种。这两种方法都借助了手的几何特征,简单但比较粗糙,鲁棒性不够。 方原创 2013-03-23 23:20:23 · 20281 阅读 · 14 评论 -
时空上下文视觉跟踪(STC)算法的解读与代码复现
时空上下文视觉跟踪(STC)算法的解读与代码复现zouxy09@qq.comhttp://blog.csdn.net/zouxy09 本博文主要是关注一篇视觉跟踪的论文。这篇论文是Kaihua Zhang等人今年投稿到一个会议的文章,因为会议还没有出结果,所以作者还没有发布他的Matlab源代码。但为了让我们先睹为快,作者把论文放在arxiv这个网站上面供大家下载了。原创 2013-11-22 19:20:14 · 78439 阅读 · 148 评论 -
基于meanshift的手势跟踪与电脑鼠标控制(手势交互系统)
基于meanshift的手势跟踪与电脑鼠标控制zouxy09@qq.comhttp://blog.csdn.net/zouxy09 一年多前开始接触计算机视觉这个领域的时候,年幼无知,倍感吃力。当年惶恐,从而盲从。挣扎了不少时日,感觉自己好像还是处于领域的门外汉一样,在理论与实践的鸿沟中无法挣脱,心里空落落的。在这种挥之不去的烦忧中,某个时候豁然开朗,觉得要看一个系统的代码了,看看别原创 2014-01-06 11:12:00 · 31986 阅读 · 41 评论 -
基于感知哈希算法的视觉目标跟踪
基于感知哈希算法的视觉目标跟踪zouxy09@qq.comhttp://blog.csdn.net/zouxy09 偶然看到这三篇博文[1][2][3],提到图片检索网站TinEye和谷歌的相似图片搜索引擎的技术原理。以图搜图搜索引擎的使命是:你上传一张图片,然后他们尽全力帮你把互联网上所有与它相似的图片搜索出来。当然了,这只是他们认为的相似,所以有时候搜索结果也不一定对。事实上,以原创 2013-12-21 20:17:42 · 58008 阅读 · 42 评论 -
Matlab与C++混合编程(依赖OpenCV)
Matlab与C++混合编程(依赖OpenCV)zouxy09@qq.comhttp://blog.csdn.net/zouxy09 之前在运行别人论文的代码的时候,经常有遇到Matlab与C++混合编程的影子。实际上就是通过Matlab的Mex工具将C++的代码编译成Matlab支持调用的可执行文件和函数接口。这样一方面可以在Matlab中利用已经编写好的函数,尽管这个函数是用C+原创 2014-03-05 16:20:48 · 63196 阅读 · 23 评论 -
运动检测(前景检测)之(一)ViBe
运动检测(前景检测)之(一)ViBezouxy09@qq.comhttp://blog.csdn.net/zouxy09 因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新的方法和思路。个人了解的大概概括为以下一些: 帧差、背景减除(GMM、CodeBook、 SOBS、 SACON、 VIBE、 W4、多帧平均……)、光流(稀疏光流、稠密光流)、运动竞争(原创 2013-07-29 21:26:12 · 59840 阅读 · 30 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(三)
TLD(Tracking-Learning-Detection)学习与源码理解之(三)zouxy09@qq.com下面是自己在看论文和这些大牛的分析过程中,对代码进行了一些理解,但是由于自己接触图像处理和机器视觉没多久,另外由于自己编程能力比较弱,所以分析过程可能会有不少的错误,希望各位不吝指正。而且,因为编程很多地方不懂,所以注释得非常乱,还海涵。 从main()函数切入,分析整原创 2012-08-21 20:18:27 · 50342 阅读 · 36 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(二)
TLD(Tracking-Learning-Detection)学习与源码理解之(二)zouxy09@qq.comOpenTLD下载与编译:(1)https://github.com/arthurv/OpenTLD下载得到:arthurv-OpenTLD-1e3cd0b.zip或者在Linux下直接通过git工具进行克隆:#git clone git@github.com:原创 2012-08-21 20:17:04 · 43941 阅读 · 50 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(一)
TLD(Tracking-Learning-Detection)学习与源码理解之(一)zouxy09@qq.comTLD(Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生Zdenek Kalal在其攻读博士学位期间提出的一种新的单目标长时间(long term tracking)跟踪算法。该算法与传统跟踪算法的显著区别在于将传统的跟踪算法和传统的检测原创 2012-08-21 20:15:42 · 120080 阅读 · 39 评论 -
压缩跟踪Compressive Tracking源码理解
压缩跟踪Compressive Tracking源码理解zouxy09@qq.comhttp://blog.csdn.net/zouxy09 在前面一个介绍《Real-Time Compressive Tracking》这个paper的感知跟踪算法的博文中,我说过后面会学习下它的C++源码,但是当时因为有些事,所以就没有看了。今天,上到博客,看到一朋友在这个博文中评论原创 2012-11-21 22:38:19 · 30832 阅读 · 70 评论 -
模板匹配中差值的平方和(SSD)与互相关准则的关系
模板匹配中差值的平方和(SSD)与互相关准则的关系zouxy09@qq.comhttp://blog.csdn.net/zouxy09 模板匹配TemplateMatching是在图像中寻找目标的方法之一。原理很简单,就是在一幅图像中寻找和模板图像(patch)最相似的区域。在OpenCV中有对应的函数可以调用: void matchTemplate(原创 2013-01-28 17:25:36 · 27896 阅读 · 4 评论 -
语音信号处理之(二)基音周期估计(Pitch Detection)
语音信号处理之(二)基音周期估计(Pitch Detection)zouxy09@qq.comhttp://blog.csdn.net/zouxy09 这学期有《语音信号处理》这门课,快考试了,所以也要了解了解相关的知识点。呵呵,平时没怎么听课,现在只能抱佛脚了。顺便也总结总结,好让自己的知识架构清晰点,也和大家分享下。下面总结的是第二个知识点:基音周期估计。我们用C++实现了基于自原创 2013-06-21 00:43:21 · 76671 阅读 · 70 评论 -
运动检测(前景检测)之(二)混合高斯模型GMM
运动检测(前景检测)之(二)混合高斯模型GMMzouxy09@qq.comhttp://blog.csdn.net/zouxy09 因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新的方法和思路。个人了解的大概概括为以下一些:帧差、背景减除(GMM、CodeBook、 SOBS、 SACON、 VIBE、 W4、多帧平均……)、光流(稀疏光流、稠密光流)、运动竞争(M原创 2013-07-29 21:40:11 · 37036 阅读 · 14 评论 -
光流Optical Flow介绍与OpenCV实现
光流Optical Flow介绍与OpenCV实现zouxy09@qq.comhttp://blog.csdn.net/zouxy09 光流(optic flow)是什么呢?名字很专业,感觉很陌生,但本质上,我们是最熟悉不过的了。因为这种视觉现象我们每天都在经历。从本质上说,光流就是你在这个运动着的世界里感觉到的明显的视觉运动(呵呵,相对论,没有绝对的静止,也没有绝对原创 2013-03-17 15:53:00 · 162338 阅读 · 38 评论 -
交互系统的构建之(四)手掌与拳头检测加盟TLD
交互系统的构建之(四)手掌与拳头检测加盟TLDzouxy09@qq.com 人机交互系统的构建之(一)http://blog.csdn.net/zouxy09/article/details/7919618中提到我的整个交互系统包含以下部分: TLD系统、TTS语音合成、语音识别、手势和语音控制鼠标和键盘、运行前加入手掌的检测(这样就不用鼠标画目标box了)、拳头的检测等等原创 2012-08-31 16:48:36 · 13193 阅读 · 18 评论 -
目标检测的图像特征提取之(二)LBP特征
目标检测的图像特征提取之(二)LBP特征zouxy09@qq.com LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和 D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理原创 2012-08-31 15:33:21 · 176328 阅读 · 45 评论 -
目标检测的图像特征提取之(一)HOG特征
目标检测的图像特征提取之(一)HOG特征zouxy09@qq.com1、HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的原创 2012-08-31 15:08:16 · 285546 阅读 · 67 评论 -
计算机视觉目标检测的框架与过程
计算机视觉目标检测的框架与过程zouxy09@qq.com 个人接触机器视觉的时间不长,对于机器学习在目标检测的大体的框架和过程有了一个初步的了解,不知道对不对,如有错误,请各位大牛不吝指点。 目标的检测大体框架:目标检测分为以下几个步骤:1、训练分类器所需训练样本的创建: 训练样本包括正样本和负样本;其中正例样本是指待检目标样本(例如人脸原创 2012-08-31 13:14:06 · 33230 阅读 · 18 评论 -
交互系统的构建之(三)TTS语音合成的加盟
交互系统的构建之(三)TTS语音合成的加盟zouxy09@qq.com 人机交互系统的构建之(一)http://blog.csdn.net/zouxy09/article/details/7919618中提到我的整个交互系统包含以下部分: TLD系统、TTS语音合成、语音识别、手势和语音控制鼠标和键盘、运行前加入手掌的检测(这样就不用鼠标画目标box了)、拳头的检测等等。原创 2012-08-29 16:48:15 · 9706 阅读 · 6 评论 -
交互系统的构建之(二)Linux下鼠标和键盘的模拟控制
交互系统的构建之(二)Linux下鼠标和键盘的模拟控制zouxy09@qq.com 交互系统的构建之(一)http://blog.csdn.net/zouxy09/article/details/7919618 中提到我的整个交互系统包含以下部分: TLD系统、TTS语音合成、语音识别、手势和语音控制鼠标和键盘、运行前加入手掌的检测(这样就不用鼠标画目标box了)、拳头的检原创 2012-08-29 14:53:03 · 16845 阅读 · 2 评论 -
交互系统的构建之(一)重写Makefile编译TLD系统
交互系统的构建之(一)重写Makefile编译TLD系统zouxy09@qq.com 为了对TLD系统做一些功能的填充,例如添加语音合成来提示跟踪状态,或者加入语音识别来增加交互体验等,我就自己写了个Makefile来编译TLD系统。因为TLD的Makefile是通过cmake生成的,比较复杂,如果要加入语音合成等等API的库或者头文件的话,我都不知道在什么地方加,所以自己的整理原创 2012-08-29 12:34:10 · 7095 阅读 · 3 评论 -
从最大似然到EM算法浅解
从最大似然到EM算法浅解zouxy09@qq.comhttp://blog.csdn.net/zouxy09 机器学习十大算法之一:EM算法。能评得上十大之一,让人听起来觉得挺NB的。什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题。神为什么是神,因为神能做很多人做不了的事。那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界原创 2013-01-24 13:14:23 · 407712 阅读 · 284 评论