图像处理
文章平均质量分 88
zouxy09
关注机器学习计算机视觉人机交互和人工智能领域。
展开
-
图像卷积与滤波的一些知识点
图像卷积与滤波的一些知识点zouxy09@qq.comhttp://blog.csdn.net/zouxy09 之前在学习CNN的时候,有对卷积经常一些学习和整理,后来就烂尾了,现在稍微整理下,先放上来,以提醒和交流。一、线性滤波与卷积的基本概念 线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果。做法很简单。首先,我们有一个二维的滤波器矩原创 2015-10-12 21:24:06 · 203217 阅读 · 78 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(七)
下面是自己在看论文和这些大牛的分析过程中,对代码进行了一些理解,但是由于自己接触图像处理和机器视觉没多久,另外由于自己编程能力比较弱,所以分析过程可能会有不少的错误,希望各位不吝指正。而且,因为编程很多地方不懂,所以注释得非常乱,还海涵。 FerNNClassifier.h/* * FerNNClassifier.h * * Created on: Jun 14, 201原创 2012-08-21 20:37:16 · 19416 阅读 · 27 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(六)
下面是自己在看论文和这些大牛的分析过程中,对代码进行了一些理解,但是由于自己接触图像处理和机器视觉没多久,另外由于自己编程能力比较弱,所以分析过程可能会有不少的错误,希望各位不吝指正。而且,因为编程很多地方不懂,所以注释得非常乱,还海涵。TLD.h#include #include #include #include #include //Bounding Boxesstr原创 2012-08-21 20:35:26 · 29505 阅读 · 34 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(五)
下面是自己在看论文和这些大牛的分析过程中,对代码进行了一些理解,但是由于自己接触图像处理和机器视觉没多久,另外由于自己编程能力比较弱,所以分析过程可能会有不少的错误,希望各位不吝指正。而且,因为编程很多地方不懂,所以注释得非常乱,还海涵。LKTracker.h#include#include //使用金字塔LK光流法跟踪,所以类的成员变量很多都是OpenCV中calcOptic原创 2012-08-21 20:28:45 · 24274 阅读 · 8 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(四)
下面是自己在看论文和这些大牛的分析过程中,对代码进行了一些理解,但是由于自己接触图像处理和机器视觉没多久,另外由于自己编程能力比较弱,所以分析过程可能会有不少的错误,希望各位不吝指正。而且,因为编程很多地方不懂,所以注释得非常乱,还海涵。run_tld.cpp#include #include #include #include //c++中的sstream类,提供了程序和原创 2012-08-21 20:25:52 · 34690 阅读 · 15 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(三)
TLD(Tracking-Learning-Detection)学习与源码理解之(三)zouxy09@qq.com下面是自己在看论文和这些大牛的分析过程中,对代码进行了一些理解,但是由于自己接触图像处理和机器视觉没多久,另外由于自己编程能力比较弱,所以分析过程可能会有不少的错误,希望各位不吝指正。而且,因为编程很多地方不懂,所以注释得非常乱,还海涵。 从main()函数切入,分析整原创 2012-08-21 20:18:27 · 50360 阅读 · 36 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(二)
TLD(Tracking-Learning-Detection)学习与源码理解之(二)zouxy09@qq.comOpenTLD下载与编译:(1)https://github.com/arthurv/OpenTLD下载得到:arthurv-OpenTLD-1e3cd0b.zip或者在Linux下直接通过git工具进行克隆:#git clone git@github.com:原创 2012-08-21 20:17:04 · 43949 阅读 · 50 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(一)
TLD(Tracking-Learning-Detection)学习与源码理解之(一)zouxy09@qq.comTLD(Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生Zdenek Kalal在其攻读博士学位期间提出的一种新的单目标长时间(long term tracking)跟踪算法。该算法与传统跟踪算法的显著区别在于将传统的跟踪算法和传统的检测原创 2012-08-21 20:15:42 · 120120 阅读 · 39 评论 -
交互系统的构建之(一)重写Makefile编译TLD系统
交互系统的构建之(一)重写Makefile编译TLD系统zouxy09@qq.com 为了对TLD系统做一些功能的填充,例如添加语音合成来提示跟踪状态,或者加入语音识别来增加交互体验等,我就自己写了个Makefile来编译TLD系统。因为TLD的Makefile是通过cmake生成的,比较复杂,如果要加入语音合成等等API的库或者头文件的话,我都不知道在什么地方加,所以自己的整理原创 2012-08-29 12:34:10 · 7108 阅读 · 3 评论 -
交互系统的构建之(二)Linux下鼠标和键盘的模拟控制
交互系统的构建之(二)Linux下鼠标和键盘的模拟控制zouxy09@qq.com 交互系统的构建之(一)http://blog.csdn.net/zouxy09/article/details/7919618 中提到我的整个交互系统包含以下部分: TLD系统、TTS语音合成、语音识别、手势和语音控制鼠标和键盘、运行前加入手掌的检测(这样就不用鼠标画目标box了)、拳头的检原创 2012-08-29 14:53:03 · 16864 阅读 · 2 评论 -
交互系统的构建之(三)TTS语音合成的加盟
交互系统的构建之(三)TTS语音合成的加盟zouxy09@qq.com 人机交互系统的构建之(一)http://blog.csdn.net/zouxy09/article/details/7919618中提到我的整个交互系统包含以下部分: TLD系统、TTS语音合成、语音识别、手势和语音控制鼠标和键盘、运行前加入手掌的检测(这样就不用鼠标画目标box了)、拳头的检测等等。原创 2012-08-29 16:48:15 · 9727 阅读 · 6 评论 -
计算机视觉目标检测的框架与过程
计算机视觉目标检测的框架与过程zouxy09@qq.com 个人接触机器视觉的时间不长,对于机器学习在目标检测的大体的框架和过程有了一个初步的了解,不知道对不对,如有错误,请各位大牛不吝指点。 目标的检测大体框架:目标检测分为以下几个步骤:1、训练分类器所需训练样本的创建: 训练样本包括正样本和负样本;其中正例样本是指待检目标样本(例如人脸原创 2012-08-31 13:14:06 · 33245 阅读 · 18 评论 -
目标检测的图像特征提取之(一)HOG特征
目标检测的图像特征提取之(一)HOG特征zouxy09@qq.com1、HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的原创 2012-08-31 15:08:16 · 285819 阅读 · 67 评论 -
目标检测的图像特征提取之(三)Haar特征
目标检测的图像特征提取之(三)Haar特征zouxy09@qq.com1、Haar-like特征 Haar-like特征最早是由Papageorgiou等应用于人脸表示,Viola和Jones在此基础上,使用3种类型4种形式的特征。Haar特征分为三类:边缘特征、线性特征、中心特征和对角线特征,组合成特征模板。特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白色矩原创 2012-08-31 15:41:28 · 155802 阅读 · 23 评论 -
浅析人脸检测之Haar分类器方法:Haar特征、积分图、 AdaBoost 、级联
浅析人脸检测之Haar分类器方法一、Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来。 目前的人脸检测方法主要有两大类:基于知识和基于统计。Ø 基于知识的方法:主要利用先验知识将人脸看作器官特征的组合,根转载 2012-08-30 09:55:48 · 98070 阅读 · 51 评论 -
人脸识别之特征脸方法(Eigenface)
人脸识别之特征脸方法(Eigenface)zouxy09@qq.comhttp://blog.csdn.net/zouxy09 因为需要,花了一点时间写了下经典的基于特征脸(EigenFace)的人脸识别方法的Matlab代码。这里仅把该代码分享出来。其实,在较新版本的OpenCV中已经提供了FaceRecognizer这一个类,里面不仅包含了特征脸EigenFace,还有Fisher原创 2015-04-25 22:12:06 · 164084 阅读 · 24 评论 -
从最大似然到EM算法浅解
从最大似然到EM算法浅解zouxy09@qq.comhttp://blog.csdn.net/zouxy09 机器学习十大算法之一:EM算法。能评得上十大之一,让人听起来觉得挺NB的。什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题。神为什么是神,因为神能做很多人做不了的事。那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界原创 2013-01-24 13:14:23 · 408157 阅读 · 284 评论 -
运动检测(前景检测)之(一)ViBe
运动检测(前景检测)之(一)ViBezouxy09@qq.comhttp://blog.csdn.net/zouxy09 因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新的方法和思路。个人了解的大概概括为以下一些: 帧差、背景减除(GMM、CodeBook、 SOBS、 SACON、 VIBE、 W4、多帧平均……)、光流(稀疏光流、稠密光流)、运动竞争(原创 2013-07-29 21:26:12 · 59901 阅读 · 30 评论 -
Matlab与C++混合编程(依赖OpenCV)
Matlab与C++混合编程(依赖OpenCV)zouxy09@qq.comhttp://blog.csdn.net/zouxy09 之前在运行别人论文的代码的时候,经常有遇到Matlab与C++混合编程的影子。实际上就是通过Matlab的Mex工具将C++的代码编译成Matlab支持调用的可执行文件和函数接口。这样一方面可以在Matlab中利用已经编写好的函数,尽管这个函数是用C+原创 2014-03-05 16:20:48 · 63238 阅读 · 23 评论 -
基于感知哈希算法的视觉目标跟踪
基于感知哈希算法的视觉目标跟踪zouxy09@qq.comhttp://blog.csdn.net/zouxy09 偶然看到这三篇博文[1][2][3],提到图片检索网站TinEye和谷歌的相似图片搜索引擎的技术原理。以图搜图搜索引擎的使命是:你上传一张图片,然后他们尽全力帮你把互联网上所有与它相似的图片搜索出来。当然了,这只是他们认为的相似,所以有时候搜索结果也不一定对。事实上,以原创 2013-12-21 20:17:42 · 58038 阅读 · 42 评论 -
图像分割之(六)交叉视觉皮质模型(ICM)
图像分割之(六)交叉视觉皮质模型(ICM)zouxy09@qq.comhttp://blog.csdn.net/zouxy09 我以前是不知道这个图像分割方法的。之前有个朋友看到我之前图像分割系列的博文,然后就和我说有这么一个东西。所以当时我就稍微看了下。主要还是参考下面这篇论文的,然后按照论文所说的算法自己实现了一部分的代码(没有实现熵的那部分)。 牛建伟等,《基于修正原创 2013-10-28 20:24:10 · 17322 阅读 · 3 评论 -
时空上下文视觉跟踪(STC)算法的解读与代码复现
时空上下文视觉跟踪(STC)算法的解读与代码复现zouxy09@qq.comhttp://blog.csdn.net/zouxy09 本博文主要是关注一篇视觉跟踪的论文。这篇论文是Kaihua Zhang等人今年投稿到一个会议的文章,因为会议还没有出结果,所以作者还没有发布他的Matlab源代码。但为了让我们先睹为快,作者把论文放在arxiv这个网站上面供大家下载了。原创 2013-11-22 19:20:14 · 78493 阅读 · 148 评论 -
SONY的CMOS 图像传感器技术发展路线
SONY的CMOS 图像传感器技术发展路线zouxy09@qq.com 图像质量的关键:高灵敏度和低噪声,所以SONY的技术改进也一直围绕在这两个方面。 技术的发展路线:高灵敏度、高速、高信噪比、低噪声、低照度、高动态范围、更强大的功能、更紧凑的尺寸。(1)单像素尺寸的工艺发展:从08年最小的1.75um,到09年最小的1.4um,再到11年最小的1.12u原创 2012-08-22 12:18:53 · 25048 阅读 · 2 评论 -
SAMSUNG的CMOS 图像传感器技术发展路线
SAMSUNG的CMOS 图像传感器技术发展路线 zouxy09@qq.com1、全新BSI技术三星高端背照CMOS发布1.1时间: 2010年09月08日 1.2新技术:三星方面将此技术定义为“背面照度像素技术”,英文简写为BSI。其主要技术特点为感光元件背面搜集光线,而会置于顶部的光敏二极管来进行记录。这样的设计使得其在暗光条件下感光敏感度提升了30%左右。原创 2012-08-22 12:24:04 · 9436 阅读 · 0 评论 -
OmniVision的CMOS 图像传感器技术发展路线
OmniVision的CMOS 图像传感器技术发展路线: zouxy09@qq.com1、从OmniPixel1,到OmniPixel2,再到OmniPixel3技术推出时间像素尺寸(um)CMOS工艺(nm)结构OmniPixel-12004.8 FS原创 2012-08-22 11:27:31 · 13167 阅读 · 0 评论 -
cmos图像传感器应用实例及其发展趋势分析
cmos图像传感器应用实例及其发展趋势分析zouxy09@qq.com 1、PC终端摄像头1.1 应用要求:网络视频聊天,基本的电脑视频采集应用(如人脸、手势识别等),帧率一般30fps,动态图像获取占主要; 1.2 现有的产品情况:Ø 现在市场上电脑摄像头的品牌已经很多了,基本上都是采用CMOS彩色图像传感器。Ø 静态像素从低端的30万像素到高端的千万像素原创 2012-08-22 12:38:13 · 13892 阅读 · 1 评论 -
简单粗糙的指尖检测方法(FingerTips Detection)
简单粗糙的指尖检测方法(FingerTips Detection)zouxy09@qq.comhttp://blog.csdn.net/zouxy09 在人机交互领域,如果可以比较好的检测指尖,对于交互的丰富度、灵活性来说是有很大提升的。目前指尖检测的方法也很多,我这里稍微尝试了下简单了两种。这两种方法都借助了手的几何特征,简单但比较粗糙,鲁棒性不够。 方原创 2013-03-23 23:20:23 · 20356 阅读 · 14 评论 -
目标检测的图像特征提取之(二)LBP特征
目标检测的图像特征提取之(二)LBP特征zouxy09@qq.com LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和 D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理原创 2012-08-31 15:33:21 · 176452 阅读 · 45 评论 -
交互系统的构建之(四)手掌与拳头检测加盟TLD
交互系统的构建之(四)手掌与拳头检测加盟TLDzouxy09@qq.com 人机交互系统的构建之(一)http://blog.csdn.net/zouxy09/article/details/7919618中提到我的整个交互系统包含以下部分: TLD系统、TTS语音合成、语音识别、手势和语音控制鼠标和键盘、运行前加入手掌的检测(这样就不用鼠标画目标box了)、拳头的检测等等原创 2012-08-31 16:48:36 · 13206 阅读 · 18 评论 -
图像分割之(一)概述
图像分割之(一)概述zouxy09@qq.comhttp://blog.csdn.net/zouxy09 所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。我们先对目前主要的图像分割方法做个概述,后面再对个别方法做详细的了解和学习。1、基于阈值的分割方法原创 2013-01-23 00:23:03 · 163663 阅读 · 21 评论 -
生成模型与判别模型
生成模型与判别模型zouxy09@qq.comhttp://blog.csdn.net/zouxy09 一直在看论文的过程中遇到这个问题,折腾了不少时间,然后是下面的一点理解,不知道正确否。若有错误,还望各位前辈不吝指正,以免小弟一错再错。在此谢过。 一、决策函数Y=f(X)或者条件概率分布P(Y|X) 监督学习的任务就是从数据中学习一个模型(也叫分原创 2012-11-17 23:24:42 · 126140 阅读 · 57 评论 -
图像处理和计算机视觉中的经典论文
图像处理和计算机视觉中的经典论文zouxy09@qq.comhttp://blog.csdn.net/zouxy09 转自:http://www.cnblogs.com/moondark/archive/2012/04/20/2459594.html 感谢水木上同领域的同学分享,有了他的整理,让我很方便的获得了CV方面相关的经典论文,我也顺便整理一下,把pdf中的文字转载 2012-11-28 10:10:57 · 20731 阅读 · 5 评论 -
视觉跟踪综述
视觉跟踪综述zouxy09@qq.comhttp://blog.csdn.net/zouxy09 转自:http://www.cnblogs.com/CVArt/archive/2011/07/03/2096683.html 目标跟踪是绝大多数视觉系统中不可或缺的环节。在二维视频跟踪算法中,基于目标颜色信息或基于目标运动信息等方法是常用的跟踪方转载 2012-11-28 09:58:50 · 10597 阅读 · 4 评论 -
计算机视觉领域的一些牛人博客,研究机构等的网站链接
计算机视觉领域的一些牛人博客,研究机构等的网站链接zouxy09@qq.comhttp://blog.csdn.net/zouxy09 转自:http://www.cnblogs.com/Rick-w/archive/2012/04/14/2446921.html 以下链接是本人整理的关于计算机视觉(ComputerVision, CV)相关领域的网站链接,转载 2012-11-28 09:50:09 · 10420 阅读 · 1 评论 -
压缩感知(Compressive Sensing)学习之(二)
压缩感知(Compressive Sensing)学习之(二)zouxy09@qq.comhttp://blog.csdn.net/zouxy09 上一回粗略的引入了压缩感知。 http://blog.csdn.net/zouxy09/article/details/8118313 下面就针对自己的了解,具体总结下压缩感知理论。由于自己也是原创 2012-10-27 13:01:17 · 125847 阅读 · 27 评论 -
压缩跟踪Compressive Tracking
压缩跟踪Compressive Trackingzouxy09@qq.comhttp://blog.csdn.net/zouxy09 好了,学习了解了稀疏感知的理论知识后,终于可以来学习《Real-Time Compressive Tracking》这个paper介绍的感知跟踪算法了。自己英文水平有限,理解难免出错,还望各位不吝指正。 下面是这个算法原创 2012-10-27 13:11:22 · 70748 阅读 · 65 评论 -
机器学习知识点学习
机器学习知识点学习zouxy09@qq.comhttp://blog.csdn.net/zouxy09 在学习机器学习的有关知识时,搜索到JerryLead的cnblog中的Machine Learning专栏,里面对于机器学习的部分算法和知识点讲解地很经典和透彻。所以Mark在这,多多学习!http://www.cnblogs.com/jerrylead/tag原创 2012-10-23 12:20:09 · 17984 阅读 · 2 评论 -
用单张2D图像重构3D场景
用单张2D图像重构3D场景zouxy09@qq.comhttp://blog.csdn.net/zouxy09 之前看到Stanford大学的机器学习公开课程的lecture01中,Andrew Ng介绍他的两个学生用单幅图像去重构这个场景的三维模型。感觉非常厉害,所以就自己了解了一下。而这个研究也在相应的大学网站上面提供了详细的资料,包括相关论文、编写的代码和训练涉及到的原创 2012-10-17 23:25:22 · 44964 阅读 · 5 评论 -
理解矩阵
无意中看到孟岩老师的关于理解矩阵的博客,为之思维所惊叹!受益匪浅啊,故转载之: 理解矩阵一:转载自:http://blog.csdn.net/myan/article/details/647511前不久chensh出于不可告人的目的,要充当老师,教别人线性代数。于是我被揪住就线性代数中一些务虚性的问题与他讨论了几次。很明显,chensh觉得,要让自己在讲线性代数的时候不被那位强势的转载 2012-09-21 16:08:58 · 14521 阅读 · 10 评论 -
数学之美番外篇:平凡而又神奇的贝叶斯方法
数学之美番外篇:平凡而又神奇的贝叶斯方法 转载自:http://mindhacks.cn/2008/09/21/the-magical-bayesian-method/ 概率论只不过是把常识用数学公式表达了出来。——拉普拉斯 记得读本科的时候,最喜欢到城里的计算机书店里面去闲逛,一逛就是好几个小时;有一次,在书店看到一本书,名叫贝叶斯方法。当时数学系转载 2012-09-21 17:11:31 · 14194 阅读 · 2 评论