
计算机视觉
文章平均质量分 87
zouxy09
关注机器学习计算机视觉人机交互和人工智能领域。
展开
-
图像卷积与滤波的一些知识点
图像卷积与滤波的一些知识点zouxy09@qq.comhttp://blog.csdn.net/zouxy09 之前在学习CNN的时候,有对卷积经常一些学习和整理,后来就烂尾了,现在稍微整理下,先放上来,以提醒和交流。一、线性滤波与卷积的基本概念 线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果。做法很简单。首先,我们有一个二维的滤波器矩原创 2015-10-12 21:24:06 · 204272 阅读 · 78 评论 -
交互系统的构建之(一)重写Makefile编译TLD系统
交互系统的构建之(一)重写Makefile编译TLD系统zouxy09@qq.com 为了对TLD系统做一些功能的填充,例如添加语音合成来提示跟踪状态,或者加入语音识别来增加交互体验等,我就自己写了个Makefile来编译TLD系统。因为TLD的Makefile是通过cmake生成的,比较复杂,如果要加入语音合成等等API的库或者头文件的话,我都不知道在什么地方加,所以自己的整理原创 2012-08-29 12:34:10 · 7128 阅读 · 3 评论 -
交互系统的构建之(二)Linux下鼠标和键盘的模拟控制
交互系统的构建之(二)Linux下鼠标和键盘的模拟控制zouxy09@qq.com 交互系统的构建之(一)http://blog.csdn.net/zouxy09/article/details/7919618 中提到我的整个交互系统包含以下部分: TLD系统、TTS语音合成、语音识别、手势和语音控制鼠标和键盘、运行前加入手掌的检测(这样就不用鼠标画目标box了)、拳头的检原创 2012-08-29 14:53:03 · 16910 阅读 · 2 评论 -
交互系统的构建之(三)TTS语音合成的加盟
交互系统的构建之(三)TTS语音合成的加盟zouxy09@qq.com 人机交互系统的构建之(一)http://blog.csdn.net/zouxy09/article/details/7919618中提到我的整个交互系统包含以下部分: TLD系统、TTS语音合成、语音识别、手势和语音控制鼠标和键盘、运行前加入手掌的检测(这样就不用鼠标画目标box了)、拳头的检测等等。原创 2012-08-29 16:48:15 · 9769 阅读 · 6 评论 -
计算机视觉目标检测的框架与过程
计算机视觉目标检测的框架与过程zouxy09@qq.com 个人接触机器视觉的时间不长,对于机器学习在目标检测的大体的框架和过程有了一个初步的了解,不知道对不对,如有错误,请各位大牛不吝指点。 目标的检测大体框架:目标检测分为以下几个步骤:1、训练分类器所需训练样本的创建: 训练样本包括正样本和负样本;其中正例样本是指待检目标样本(例如人脸原创 2012-08-31 13:14:06 · 33332 阅读 · 18 评论 -
目标检测的图像特征提取之(一)HOG特征
目标检测的图像特征提取之(一)HOG特征zouxy09@qq.com1、HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的原创 2012-08-31 15:08:16 · 287360 阅读 · 67 评论 -
目标检测的图像特征提取之(二)LBP特征
目标检测的图像特征提取之(二)LBP特征zouxy09@qq.com LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和 D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理原创 2012-08-31 15:33:21 · 176746 阅读 · 45 评论 -
交互系统的构建之(四)手掌与拳头检测加盟TLD
交互系统的构建之(四)手掌与拳头检测加盟TLDzouxy09@qq.com 人机交互系统的构建之(一)http://blog.csdn.net/zouxy09/article/details/7919618中提到我的整个交互系统包含以下部分: TLD系统、TTS语音合成、语音识别、手势和语音控制鼠标和键盘、运行前加入手掌的检测(这样就不用鼠标画目标box了)、拳头的检测等等原创 2012-08-31 16:48:36 · 13245 阅读 · 18 评论 -
最简单的目标跟踪(模版匹配)
最简单的目标跟踪(模版匹配)zouxy09@qq.comhttp://blog.csdn.net/zouxy09 一、概述 目标跟踪是计算机视觉领域的一个重要分支。研究的人很多,近几年也出现了很多很多的算法。大家看看淋漓满目的paper就知道了。但在这里,我们也聚焦下比较简单的算法,看看它的优势在哪里。毕竟有时候简单就是一种美。 在这里我们一起来欣赏下“模板匹配”这个简单点原创 2013-10-28 21:36:54 · 71655 阅读 · 30 评论 -
zigzag模式提取矩阵元素
zigzag模式提取矩阵元素zouxy09@qq.comhttp://blog.csdn.net/zouxy09 这节博文只是为了上传个代码而已。希望对需要的人有用。zig-zag模式如下图所示。它可以用来按照以下的顺序来提取一个矩阵的元素。 这个东西用在哪呢?用在离散余弦变换的系数提取里面。离散余弦变换(DCT)是种图像压缩算法,JPEG-2000好像就是用它来进行图像原创 2013-10-28 19:17:31 · 20637 阅读 · 4 评论 -
Deep Learning源代码收集-持续更新…
Deep Learning源代码收集-持续更新…zouxy09@qq.comhttp://blog.csdn.net/zouxy09 收集了一些Deep Learning的源代码。主要是Matlab和C++的,当然也有python的。放在这里,后续遇到新的会持续更新。下表没有的也欢迎大家提供,以便大家使用和交流。谢谢。 最近一次更新:2013-9-22Theanohttp://deeplear原创 2013-09-22 23:25:37 · 94782 阅读 · 23 评论 -
LibLinear(SVM包)使用说明之(一)README
LibLinear(SVM包)使用说明之(一)READMEzouxy09@qq.comhttp://blog.csdn.net/zouxy09 本文主要是翻译liblinear-1.93版本的README文件。里面介绍了liblinear的详细使用方法。更多信息请参考:http://www.csie.ntu.edu.tw/~cjlin/liblinear/ 在这里我用到的是LibLinear的M原创 2013-09-02 19:53:45 · 78287 阅读 · 6 评论 -
LibLinear(SVM包)使用说明之(三)实践
LibLinear(SVM包)使用说明之(三)实践zouxy09@qq.comhttp://blog.csdn.net/zouxy09 我们在UFLDL的教程中,Exercise: Convolution and Pooling这一章节,已经得到了cnnPooledFeatures.mat特征。在该练习中,我们使用的是softmax分类器来分类的。在这里我们修改为用SVM来替代原创 2013-09-02 20:02:26 · 15571 阅读 · 4 评论 -
LibLinear(SVM包)使用说明之(二)MATLAB接口
LibLinear(SVM包)使用说明之(二)MATLAB接口zouxy09@qq.comhttp://blog.csdn.net/zouxy09 一、介绍 LIBLINEAR是一个简单的求解大规模规则化线性分类和回归的软件包。本文介绍在Matlab中如何使用该软件包。(http://www.csie.ntu.edu.tw/~cjlin/liblinear) 二、安装原创 2013-09-02 19:56:43 · 26875 阅读 · 4 评论 -
Deep Learning论文笔记之(七)深度网络高层特征可视化
Deep Learning论文笔记之(七)深度网络高层特征可视化zouxy09@qq.comhttp://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样。所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察。更好的还可原创 2013-08-16 23:22:31 · 43861 阅读 · 7 评论 -
Deep Learning论文笔记之(六)Multi-Stage多级架构分析
Deep Learning论文笔记之(六)Multi-Stage多级架构分析zouxy09@qq.comhttp://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样。所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察原创 2013-08-16 17:48:46 · 37341 阅读 · 4 评论 -
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现zouxy09@qq.comhttp://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样。所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察。更好原创 2013-08-16 00:40:14 · 500230 阅读 · 88 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(一)
TLD(Tracking-Learning-Detection)学习与源码理解之(一)zouxy09@qq.comTLD(Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生Zdenek Kalal在其攻读博士学位期间提出的一种新的单目标长时间(long term tracking)跟踪算法。该算法与传统跟踪算法的显著区别在于将传统的跟踪算法和传统的检测原创 2012-08-21 20:15:42 · 120273 阅读 · 39 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(二)
TLD(Tracking-Learning-Detection)学习与源码理解之(二)zouxy09@qq.comOpenTLD下载与编译:(1)https://github.com/arthurv/OpenTLD下载得到:arthurv-OpenTLD-1e3cd0b.zip或者在Linux下直接通过git工具进行克隆:#git clone git@github.com:原创 2012-08-21 20:17:04 · 43974 阅读 · 50 评论 -
人脸识别之特征脸方法(Eigenface)
人脸识别之特征脸方法(Eigenface)zouxy09@qq.comhttp://blog.csdn.net/zouxy09 因为需要,花了一点时间写了下经典的基于特征脸(EigenFace)的人脸识别方法的Matlab代码。这里仅把该代码分享出来。其实,在较新版本的OpenCV中已经提供了FaceRecognizer这一个类,里面不仅包含了特征脸EigenFace,还有Fisher原创 2015-04-25 22:12:06 · 164593 阅读 · 24 评论 -
从最大似然到EM算法浅解
从最大似然到EM算法浅解zouxy09@qq.comhttp://blog.csdn.net/zouxy09 机器学习十大算法之一:EM算法。能评得上十大之一,让人听起来觉得挺NB的。什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题。神为什么是神,因为神能做很多人做不了的事。那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界原创 2013-01-24 13:14:23 · 409355 阅读 · 284 评论 -
运动检测(前景检测)之(一)ViBe
运动检测(前景检测)之(一)ViBezouxy09@qq.comhttp://blog.csdn.net/zouxy09 因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新的方法和思路。个人了解的大概概括为以下一些: 帧差、背景减除(GMM、CodeBook、 SOBS、 SACON、 VIBE、 W4、多帧平均……)、光流(稀疏光流、稠密光流)、运动竞争(原创 2013-07-29 21:26:12 · 60034 阅读 · 30 评论 -
关于计算机视觉(随谈)
关于计算机视觉—随便聊聊zouxy09@qq.comhttp://blog.csdn.net/zouxy09 之前看了这么一本说自然图像统计学的书,本来是想着要好好看,然后每天翻译几页的。但实习的时候太忙了,没有什么时间,所以只把目录给翻译了,哈哈。这本书叫:Natural Image Statistics: A Probabilistic Approach to Early Com原创 2014-08-17 15:34:02 · 48132 阅读 · 32 评论 -
基于感知哈希算法的视觉目标跟踪
基于感知哈希算法的视觉目标跟踪zouxy09@qq.comhttp://blog.csdn.net/zouxy09 偶然看到这三篇博文[1][2][3],提到图片检索网站TinEye和谷歌的相似图片搜索引擎的技术原理。以图搜图搜索引擎的使命是:你上传一张图片,然后他们尽全力帮你把互联网上所有与它相似的图片搜索出来。当然了,这只是他们认为的相似,所以有时候搜索结果也不一定对。事实上,以原创 2013-12-21 20:17:42 · 58149 阅读 · 42 评论 -
基于meanshift的手势跟踪与电脑鼠标控制(手势交互系统)
基于meanshift的手势跟踪与电脑鼠标控制zouxy09@qq.comhttp://blog.csdn.net/zouxy09 一年多前开始接触计算机视觉这个领域的时候,年幼无知,倍感吃力。当年惶恐,从而盲从。挣扎了不少时日,感觉自己好像还是处于领域的门外汉一样,在理论与实践的鸿沟中无法挣脱,心里空落落的。在这种挥之不去的烦忧中,某个时候豁然开朗,觉得要看一个系统的代码了,看看别原创 2014-01-06 11:12:00 · 32227 阅读 · 41 评论 -
图像分割之(六)交叉视觉皮质模型(ICM)
图像分割之(六)交叉视觉皮质模型(ICM)zouxy09@qq.comhttp://blog.csdn.net/zouxy09 我以前是不知道这个图像分割方法的。之前有个朋友看到我之前图像分割系列的博文,然后就和我说有这么一个东西。所以当时我就稍微看了下。主要还是参考下面这篇论文的,然后按照论文所说的算法自己实现了一部分的代码(没有实现熵的那部分)。 牛建伟等,《基于修正原创 2013-10-28 20:24:10 · 17430 阅读 · 3 评论 -
时空上下文视觉跟踪(STC)算法的解读与代码复现
时空上下文视觉跟踪(STC)算法的解读与代码复现zouxy09@qq.comhttp://blog.csdn.net/zouxy09 本博文主要是关注一篇视觉跟踪的论文。这篇论文是Kaihua Zhang等人今年投稿到一个会议的文章,因为会议还没有出结果,所以作者还没有发布他的Matlab源代码。但为了让我们先睹为快,作者把论文放在arxiv这个网站上面供大家下载了。原创 2013-11-22 19:20:14 · 78726 阅读 · 148 评论 -
简单粗糙的指尖检测方法(FingerTips Detection)
简单粗糙的指尖检测方法(FingerTips Detection)zouxy09@qq.comhttp://blog.csdn.net/zouxy09 在人机交互领域,如果可以比较好的检测指尖,对于交互的丰富度、灵活性来说是有很大提升的。目前指尖检测的方法也很多,我这里稍微尝试了下简单了两种。这两种方法都借助了手的几何特征,简单但比较粗糙,鲁棒性不够。 方原创 2013-03-23 23:20:23 · 20459 阅读 · 14 评论 -
浅析人脸检测之Haar分类器方法:Haar特征、积分图、 AdaBoost 、级联
浅析人脸检测之Haar分类器方法一、Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来。 目前的人脸检测方法主要有两大类:基于知识和基于统计。Ø 基于知识的方法:主要利用先验知识将人脸看作器官特征的组合,根转载 2012-08-30 09:55:48 · 98440 阅读 · 51 评论 -
目标检测的图像特征提取之(三)Haar特征
目标检测的图像特征提取之(三)Haar特征zouxy09@qq.com1、Haar-like特征 Haar-like特征最早是由Papageorgiou等应用于人脸表示,Viola和Jones在此基础上,使用3种类型4种形式的特征。Haar特征分为三类:边缘特征、线性特征、中心特征和对角线特征,组合成特征模板。特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白色矩原创 2012-08-31 15:41:28 · 156046 阅读 · 23 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(七)
下面是自己在看论文和这些大牛的分析过程中,对代码进行了一些理解,但是由于自己接触图像处理和机器视觉没多久,另外由于自己编程能力比较弱,所以分析过程可能会有不少的错误,希望各位不吝指正。而且,因为编程很多地方不懂,所以注释得非常乱,还海涵。 FerNNClassifier.h/* * FerNNClassifier.h * * Created on: Jun 14, 201原创 2012-08-21 20:37:16 · 19455 阅读 · 27 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(六)
下面是自己在看论文和这些大牛的分析过程中,对代码进行了一些理解,但是由于自己接触图像处理和机器视觉没多久,另外由于自己编程能力比较弱,所以分析过程可能会有不少的错误,希望各位不吝指正。而且,因为编程很多地方不懂,所以注释得非常乱,还海涵。TLD.h#include #include #include #include #include //Bounding Boxesstr原创 2012-08-21 20:35:26 · 29559 阅读 · 34 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(五)
下面是自己在看论文和这些大牛的分析过程中,对代码进行了一些理解,但是由于自己接触图像处理和机器视觉没多久,另外由于自己编程能力比较弱,所以分析过程可能会有不少的错误,希望各位不吝指正。而且,因为编程很多地方不懂,所以注释得非常乱,还海涵。LKTracker.h#include#include //使用金字塔LK光流法跟踪,所以类的成员变量很多都是OpenCV中calcOptic原创 2012-08-21 20:28:45 · 24324 阅读 · 8 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(四)
下面是自己在看论文和这些大牛的分析过程中,对代码进行了一些理解,但是由于自己接触图像处理和机器视觉没多久,另外由于自己编程能力比较弱,所以分析过程可能会有不少的错误,希望各位不吝指正。而且,因为编程很多地方不懂,所以注释得非常乱,还海涵。run_tld.cpp#include #include #include #include //c++中的sstream类,提供了程序和原创 2012-08-21 20:25:52 · 34737 阅读 · 15 评论 -
TLD(Tracking-Learning-Detection)学习与源码理解之(三)
TLD(Tracking-Learning-Detection)学习与源码理解之(三)zouxy09@qq.com下面是自己在看论文和这些大牛的分析过程中,对代码进行了一些理解,但是由于自己接触图像处理和机器视觉没多久,另外由于自己编程能力比较弱,所以分析过程可能会有不少的错误,希望各位不吝指正。而且,因为编程很多地方不懂,所以注释得非常乱,还海涵。 从main()函数切入,分析整原创 2012-08-21 20:18:27 · 50429 阅读 · 36 评论 -
Deep Learning论文笔记之(三)单层非监督学习网络分析
Deep Learning论文笔记之(三)单层非监督学习网络分析zouxy09@qq.comhttp://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样。所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察。更好的还可原创 2013-08-15 14:53:07 · 36233 阅读 · 0 评论 -
Deep Learning论文笔记之(二)Sparse Filtering稀疏滤波
Deep Learning论文笔记之(二)Sparse Filtering稀疏滤波zouxy09@qq.comhttp://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样。所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己原创 2013-08-15 14:36:39 · 41496 阅读 · 6 评论 -
Deep Learning论文笔记之(一)K-means特征学习
Deep Learning论文笔记之(一)K-means特征学习zouxy09@qq.comhttp://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样。所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察。更好的还可原创 2013-08-15 14:14:09 · 69955 阅读 · 19 评论 -
图像分割之(二)Graph Cut(图割)
图像分割之(二)Graph Cut(图割)zouxy09@qq.comhttp://blog.csdn.net/zouxy09 上一文对主要的分割方法做了一个概述。那下面我们对其中几个比较感兴趣的算法做个学习。下面主要是Graph Cut,下一个博文我们再学习下Grab Cut,两者都是基于图论的分割方法。另外OpenCV实现了Grab Cut,具体的源码解读见博原创 2013-01-23 00:32:20 · 200157 阅读 · 67 评论 -
图像分割之(一)概述
图像分割之(一)概述zouxy09@qq.comhttp://blog.csdn.net/zouxy09 所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。我们先对目前主要的图像分割方法做个概述,后面再对个别方法做详细的了解和学习。1、基于阈值的分割方法原创 2013-01-23 00:23:03 · 163922 阅读 · 21 评论