python—networkx:求图的平均路径长度并画出直方图

网络属性计算与可视化
本文详细介绍了使用NetworkX库计算并可视化洛佩兹图的网络属性,包括最短路径、平均路径长度、路径长度直方图及核心网络指标。

要绘制一个动态网络,到处找资料,收集相关的networkx绘图资料,计算路径的代码如下:

NetworkX Examples—BASIC——properties

#!/usr/bin/env python
"""
Compute some network properties for the lollipop graph.
"""
#    Copyright (C) 2004 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.

from networkx import *
G = lollipop_graph(4,6)
pathlengths=[]
#单源最短路径算法求出节点v到图G每个节点的最短路径,存入pathlengths

print("source vertex {target:length, }")
for v in G.nodes():
    spl=single_source_shortest_path_length(G,v)
    print('%s %s' % (v,spl))
    for p in spl.values():
        pathlengths.append(p)
#取出每条路径,计算平均值。
print('')print("average shortest path length %s" % (sum(pathlengths)/len(pathlengths)))
#路径长度直方图,如果路径不存在,设为1,如果已经存在过一次,则原先基础上加1
# histogram of path lengths
dist={}
for p in pathlengths:
    if p in dist:
        dist[p]+=1
    else:
        dist[p]=1

print('')
print("length #paths")
verts=dist.keys()
for d in sorted(verts):
    print('%s %d' % (d,dist[d]))
#内嵌函数求图G的多个属性
print("radius: %d" % radius(G))
print("diameter: %d" % diameter(G))
print("eccentricity: %s" % eccentricity(G))
print("center: %s" % center(G))
print("periphery: %s" % periphery(G))
print("density: %s" % density(G))
PFC(Particle Flow Code)是一种用于模拟颗粒材料力学行为的离散元数值模拟软件。在PFC中进行试件的力链识别,统计力链长度和数量,通常涉及以下几个步骤: 1. **建立模型施加载荷** 在PFC中创建颗粒试件模型,设置颗粒之间的接触属性,施加相应的边界条件和外部载荷。例如,进行单轴压缩或三轴压缩试验以生成颗粒间的力链结构。 2. **获取颗粒间接触力数据** 使用FISH函数或内置命令提取颗粒之间的接触力信息。可以使用`contact list`命令将接触信息导为文本文件,包含颗粒对的编号、法向力和切向力等数据。 3. **定义力链标准** 根据研究需设定力链阈值。例如,仅考虑法向力大于某一临界值的接触作为有效力链的一部分。此阈值可以根据平均接触力或最大接触力的比例确定。 4. **构建力链网络** 利用论方法将颗粒视为节点,满足力链标准的接触视为边,从而构建力链网络。可使用Python中的NetworkX库读取接触数据建立结构。 5. **识别力链路径** 在结构中,采用深度优先搜索(DFS)或广度优先搜索(BFS)算法识别所有连通的力链路径。每条路径即为一条完整的力链。 6. **统计力链长度与数量** 对于每条识别的力链,计算其长度为颗粒中心之间的欧几里得距离之和: $$ L = \sum_{i=1}^{n-1} \sqrt{(x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2} $$ 其中 $L$ 为力链长度,$(x_i, y_i)$ 为第 $i$ 个颗粒中心坐标。统计所有力链的数量及其长度分布。 7. **可视化与分析** 利用Matplotlib或Paraview等工具对力链网络进行可视化,结合直方图或累积分布曲线分析力链长度特征。 以下是使用Python处理接触数据识别力链的代码示例: ```python import networkx as nx import numpy as np # 假设 contacts 是一个列表,包含颗粒编号和接触力信息 contacts = [ # 示例格式:(particle1_id, particle2_id, force_magnitude) ] # 定义力链阈值 threshold = 1.0 # 构建结构 G = nx.Graph() # 添加满足阈值的边 for p1, p2, force in contacts: if force >= threshold: G.add_edge(p1, p2, weight=force) # 识别连通子(即力链) chains = list(nx.connected_components(G)) # 统计每条力链的长度 chain_lengths = [] for chain in chains: # 假设 pos 是一个字典,存储每个颗粒的坐标 {id: (x, y)} length = 0.0 chain_nodes = list(chain) for i in range(len(chain_nodes) - 1): x1, y1 = pos[chain_nodes[i]] x2, y2 = pos[chain_nodes[i + 1]] length += np.sqrt((x2 - x1)**2 + (y2 - y1)**2) chain_lengths.append(length) # 输结果 print("力链数量:", len(chains)) print("力链长度列表:", chain_lengths) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值