pearson相关系数_问卷分析之SPSS相关分析、相关系数矩阵(Pearson)

本文介绍了在SPSS中如何进行皮尔逊相关系数分析,用于连续变量的相关性检验。通过计算变量的均值和标准差,创建新变量并进行双变量相关分析,得出相关系数矩阵。强调在进行数据分析前需明确分析类型,如回归分析需进行相关性检查,而相关性分析则不是必需的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一般相关性检验会用到两种系数:皮尔逊和斯皮尔曼。这两个系数的区分点就是皮尔逊研究的是连续变量,而斯皮尔曼研究的是有序变量,例如大一、大二、大三这些中间无法细分的数据。

M:均值,SD:标准差

实例:比如下图这个模型,我们对所有的因子做相关分析同时生产相关系数矩阵。

e2af9c8ac7ed1715c922bdce8b5515fb.png
我们在SPSS中导入excel数据。因为每一个因子包含很多题项,因此我们要对题项做个降维处理,把一个因子的题项变成一个变量。步骤如下:
  1. 在转换-计算变量
  2. 给维度取名并取题项的平均值。

    3c4f4870ef5d3f0257e0ec488c9e4531.png
  3. 以此类推,将所有题项都降维。

之后就可以开始进行双变量的相关分析,步骤如下:

  1. 打开分析-相关-双变量

### 如何在SPSS中计算皮尔逊相关系数 要在 IBM SPSS Statistics 中计算皮尔逊相关系数,可以通过以下方式完成。这种方法适用于两个或多个连续数值型变量的相关性分析。 #### 数据准备 确保数据集中的变量满足皮尔逊相关性分析的要求,即变量应为连续数值型变量[^1]。如果数据来自问卷调查,则通常可将其视为连续数值型变量进行处理。 #### 计算过程 进入 SPSS 软件界面后,按照以下操作执行: 1. **打开菜单选项** 在主界面上方点击 `Analyze` -> `Correlate` -> `Bivariate...` 打开二元相关对话框。 2. **选择变量** 将待分析的变量从左侧列表拖动到右侧 “Variables” 框中。例如,可以选择“宣传费用”和“销售金额”作为目标变量[^3]。 3. **设置参数** - 在下方的选项栏中确认选择了 `Pearson` 复选框以指定使用皮尔逊相关系数。 - 同时勾选 `Two-tailed` 或 `One-tailed` 来定义假设检验的方向(双侧或单侧)。大多数情况下,默认选择双侧即可。 4. **查看输出结果** 完成上述配置后,点击底部的 `OK` 键运行分析。SPSS 会在新窗口中显示结果表格,其中包含各变量间的皮尔逊相关系数及其对应的显著性 P 值。例如,“宣传费用”与“销售金额”的皮尔逊相关系数可能接近于 0.959,表明两者存在高度正相关关系。 #### 结果解释 - 如果得到的皮尔逊相关系数绝对值越趋近于 1,则表示两者的线性关联程度越高;反之则较低。 - 显著性水平 (p-value) 若小于预设阈值(如 p<0.05),说明该相关性具有统计学意义。 ```python # Python 示例代码用于验证理论概念而非实际SPSS操作 import pandas as pd from scipy.stats import pearsonr data = {'X': [1, 2, 3], 'Y': [2, 4, 6]} df = pd.DataFrame(data) correlation_coefficient, p_value = pearsonr(df['X'], df['Y']) print(f"Pearson Correlation Coefficient: {correlation_coefficient}") print(f"P Value: {p_value}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值