[BZOJ1004][HNOI2008]Cards

25 篇文章 0 订阅
2 篇文章 0 订阅

原题地址

题解

置换群,Burnside引理的应用.

注意置换群中一定有一个”不变”元素,计算时要记得考虑.

AC code:

#include <cstdio>
#include <vector>
using namespace std;
const int N=61;
int sr,sb,sg,m,p,n,ans;
int a[N];
int c[N][N];

void cal(){
    int  tot=0;
    int  L[N];
    int  f[N][21][21][21]={0};
    bool h[N]={0};
    for(int i=1;i<=n;i++){
        if(h[a[i]]) continue;
        int head=i,cnt=1;
        h[head]=1;
        for(int j=a[i];j!=head;h[j]=1,j=a[j],cnt++) ;
        L[++tot]=cnt;
    }
    if(L[1]>sr||L[1]>sb||L[1]>sg) return ;
    f[1][sr-L[1]][sb][sg]=f[1][sr][sb-L[1]][sg]=f[1][sr][sb][sg-L[1]]=1;
    for(int i=2;i<=tot;i++){
        for(int j=0;j<=sr-L[i];j++){
            for(int k=0;k<=sb-L[i];k++){
                for(int l=0;l<=sg-L[i];l++){
                    f[i][j][k][l]+=f[i-1][j+L[i]][k][l];
                    f[i][j][k][l]+=f[i-1][j][k+L[i]][l];
                    f[i][j][k][l]+=f[i-1][j][k][l+L[i]];
                    f[i][j][k][l]%=p;
                }
            }
        }
    }
    ans=(ans+f[tot][0][0][0])%p;
}

int pow(int x,int y){
    if(!y) return 1;
    int z=pow(x,y>>1);
    z=(z*z)%p;
    if(y&1) z=(z*x)%p;
    return z;
}

int main(){
    scanf("%d%d%d%d%d",&sr,&sb,&sg,&m,&p);  
    n=sr+sb+sg;
    for(int i=1;i<=m;i++){
        for(int j=1;j<=n;j++) scanf("%d",&a[j]);
        cal();
    }
    c[1][0]=c[1][1]=1;
    for(int i=2;i<=n;i++){
        c[i][0]=1;
        for(int j=1;j<=i+1;j++) c[i][j]=(c[i-1][j-1]+c[i-1][j])%p;
    }
    ans=((ans+c[n][sr]*c[n-sr][sb])*pow(m+1,p-2))%p;
    printf("%d\n",ans);

    return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值