FWT

另一种卷积

多项式乘法的卷积是这样的:

Ci=j+k=iAjBk

然而还有种神奇的卷积( 是位运算):
Ci=jk=iAjBk

FWT可以快速求这种卷积。

快速沃尔什变换

因为FFT用了系数 点值,用点值快速求卷积,再点值 系数的方法,所以我们也想让沃尔什变换具有这样的特点,于是开始构造。

离散沃尔什变换

定义 DWT(A) 是向量 A 经过离散沃尔什变换得到的向量,令变换系数为 f(i,j) ,那么:

DWT(A)i=j=0n1Ajf(i,j)DWT(A)iDWT(B)i=DWT(C)i

这样没法求 f(i,j) 啊,我们来推一下:
DWT(A)iDWT(B)i=DWT(C)ij=0n1Ajf(i,j)k=0n1Bkf(i,k)=t=0n1Ctf(i,t)j=0n1k=0n1AjBkf(i,j)f(i,k)=t=0n1jk=tAjBkf(i,t)=t=0n1jk=tAjBkf(i,jk)j=0n1k=0n1AjBkf(i,j)f(i,k)=j=0n1k=0n1AjBkf(i,jk)

也就是说 f(i,j)f(i,k)=f(i,jk)

然后就可以对不同的位运算求出不同的变换系数,直接上结论:

and:f(i,j)=[i and j=i]or:f(i,j)=[i and j=j]xor:f(i,j)=(1)count(i and j)

其中 count(i) 表示 i 在二进制下 1 的个数。这些怎么得到的?翰爷表示:

并不知道是怎么来的,但是容易验证是对的。

这里就说明一下比较神奇的 xor and or 很容易验证):

f(i,j)f(j,k)=(1)count(i and j)+count(i and k)f(i,j xor k)=(1)count(i and (j xor k))

count(i and j)+count(i and k) 求的是 i j 共有的 1 的数量加上 i k 共有的 1 的数量,我们再考虑下面那个式子表示什么。因为异或相同为 0 ,不同为 1 ,那么只有当 j k 某位上不同时才有贡献,和上面的式子相比,消去了 j k 某位上均为 1 的贡献,即 2k ,不改变奇偶性,所以是相等的。

f(i,j) 有一个很重要性质:可以二进制拆分。用 ik 表示 i 二进制下的第 k+1 高位,则:

f(i,j)=f(i0,j0)f(i1,j1)f(i2,j2)f(ilen1,jlen1)

接下来开始考虑离散沃尔什变换( n 补到 2k ):

DWT(A)i=j=0n1Ajf(i,j)=j=0n21Ajf(i,j)+j=n2n1Ajf(i,j)=j=0n21Ajf(i0,j0)f(i[1,len1],j[1,len1])+j=n2n1Ajf(i0,j0)f(i[1,len1],j[1,len1])=f(i0,0)j=0n21Ajf(i[1,len1],j[1,len1])+f(i0,1)j=n2n1Ajf(i[1,len1],j[1,len1])

喜闻乐见的规模减半了,于是( i[0,n2) ):
DWT(A)i=f(0,0)DWT(AL)i+f(0,1)DWT(AR)iDWT(A)i+n2=f(1,0)DWT(AL)i+f(1,1)DWT(AR)i

和FFT很像啊,只不过FFT是奇偶拆半,而FWT是左右拆半。正因为FWT是左右拆半,直接迭代就可以了,不需要和FFT一样二进制翻转。

逆沃尔什变换

根据离散沃尔什变换得到的递归式,我们发现只需要解一下二元一次方程就可以了。

模板

inline void FWT(int *a,int n,int f){
    for (int k=1;k<n;k<<=1)
        for (int i=0;i<n;i+=(k<<1))
            for (int j=0;j<k;j++)
                if (f==1){
                    int x=a[i+j],y=a[i+j+k];
                    //and:a[i+j]+=a[i+j+k];
                    //or :a[i+j+k]+=a[i+j];
                    //xor:a[i+j]=x+y;a[i+j+k]=x-y;
                } else{
                    int x=a[i+j],y=a[i+j+k];
                    //and:a[i+j]-=a[i+j+k];
                    //or :a[i+j+k]-=a[i+j];
                    //xor:a[i+j]=(x+y)/2;a[i+j+k]=(x-y)/2;
                }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值