【矩阵DP】BZOJ1048(HAOI2007)[分割矩阵]题解

题目概述

给出一个有权值的矩阵,一次操作将这个矩阵沿着行或列切成两半,然后这两半也可以执行同样的操作。操作 n1 n − 1 次后得到 n n 个矩阵,求这 n 个矩阵的均方差(标准差?傻傻分不清啊QAQ)。

解题报告

五维DP f[i][j][x][y][k] f [ i ] [ j ] [ x ] [ y ] [ k ] 表示将矩阵 i i 行到 x j j 列到 y 列执行 k1 k − 1 次操作得到的最优解,转移的话就直接枚举在哪里切开,两边分别执行多少次操作。用记忆化搜索来写比较方便。

示例程序

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn=10,maxk=10;

int n,m,K;LL f[maxn+5][maxn+5][maxn+5][maxn+5][maxk+5];
int all,sum[maxn+5][maxn+5];

inline LL sqr(LL x) {return x*x;}
#define val(i,j,x,y) sqr(sum[x][y]-sum[i-1][y]-sum[x][j-1]+sum[i-1][j-1]-all)
inline LL DP(int i,int j,int x,int y,int k){
    if (k==1) return val(i,j,x,y);if ((x-i+1)*(y-j+1)<k) return 1e18;
    LL &now=f[i][j][x][y][k];if (~now) return now;now=1e18;
    for (int p=i;p<x;p++) for (int t=1;t<k;t++) now=min(now,DP(i,j,p,y,t)+DP(p+1,j,x,y,k-t));
    for (int p=j;p<y;p++) for (int t=1;t<k;t++) now=min(now,DP(i,j,x,p,t)+DP(i,p+1,x,y,k-t));
    return now;
}
int main(){
    freopen("program.in","r",stdin);
    freopen("program.out","w",stdout);
    scanf("%d%d%d",&n,&m,&K);memset(f,255,sizeof(f));
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++){
            scanf("%d",&sum[i][j]);all+=sum[i][j];
            sum[i][j]*=K;sum[i][j]+=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1];
        }
    return printf("%.2f\n",sqrt((double)DP(1,1,n,m,K)/K/K/K)),0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值